Carbon nanotubes as ultrahigh-Q electromechanical resonators at 300MHz

Andreas K. Hüttel^{*}, Gary A. Steele, Benoit Witkamp, Menno Poot Leo P. Kouwenhoven, Herre S. J. van der Zant

*Present address: Institute for Experimental and Applied Physics, University of Regensburg, Germany

18th International Conference on Electronic Properties of Two-Dimensional Systems — Kobe, 2009 👍 🗆 🔊 🔍 🔿

Nanotubes as beam resonators — up to now

complicated setup — even at 1K, maximally $Q \simeq 2000$

Ultrasensitive Mass Sensing with a Nanotube Electromech. Resonator B. Lassagne, D. Garcia-Sanchez, A. Aguasca and A. Bachtold Nano Lett., 2008, 8 (11), pp 3735–373

- · Nanotube as nonlinear circuit element
- RF downmixing at mech. resonance
- $Q \lesssim 2000$ why?

- HF cables to sample: heating, noise
- Contamination during lithography
- · Clamping points?

Chip fabrication and measurement setup

- · Nanotube CVD-grown above Pt electrodes, across pre-defined trench
- Back gate connected to a gate voltage source V_g
- RF antenna suspended \sim 2 cm above chip
- Dilution refrigerator ($T \simeq 20 \,\mathrm{mK}$)
- Only dc measurement

dc Coulomb blockade measurement — beautiful diamonds

highly regular quantum dot within the nanotube

A. K. Hüttel et al., Nano Lett. 9, 2547 (2009)

Fixed V_g and V_{SD} , sweep of RF signal frequency

- Sharp resonant structure in $I_{dc}(v)$
- Very low driving power required
- From FWHM, *Q* ~ 140000

V_g dependence — this is really a mechanical resonance!

A. K. Hüttel et al., Nano Lett. 9, 2547 (2009)

< □ > <) < (~

Detection mechanism — mechanically induced averaging

- at resonant driving the nanotube position oscillates
- oscillating C_g \longrightarrow fast averaging over $I(V_g)$

- black line: dc measurement $I(V_g)$
- red line: this numerically averaged
- · blue: difference, effect of averaging
- red points: measured peak amplitude in I(v), for different values of $V_{\rm q}$

Driving into nonlinear response

- same temperature
- same working point V_g, V_{SD}
- low driving power: symmetric, "linear" response
- high driving power: asymmetric response, hysteresis Duffing-like oscillator

Temperature dependence of Q

Q(T) fits power law prediction for intrinsic dissipation in nanotube \longrightarrow H. Jiang *et al.*, Phys. Rev. Lett. **93**, 185501 (2004)

Detailed $v(V_g)$: in SET, frequency decreases

"Coulomb blockade oscillations of mechanical resonance frequency" electrostatic contribution to spring constant

Also Q and nonlinearity dominated by backaction

- Dissipation whenever charge can fluctuate
- Q decreases on SET peaks
- Nonlinearity dominated by tunneling
- Switches between weakening and softening spring

Summary, conclusion & outlook!

- 120 MHz $\lesssim v \lesssim$ 360 MHz, $Q \lesssim$ 150000
- Self-detection of motion via dc current
- Easy driving into nonlinear oscillator regime
- Q(T) is consistent with intrinsic dissipation model
- · Single-electron steps of the resonance frequency
- Backaction of single electron tunneling on v, Q, nonlinearity
- Self-excitation of motion!
- Estimated motion amplitude at resonant driving $\sim 250\,\text{pm}$ compare thermal motion 6.5 pm, zero-point motion 1.9 pm
- Application as mass sensor: sensitivity $4.2 \frac{u}{\sqrt{Hz}}$
- Without driving: mechanical thermal occupation $n \simeq 1.2$
- Stay tuned for more interesting results!!

A. K. Hüttel et al., Nano Lett. 9, 2547 (2009); G. A. Steele, A. K. Hüttel et al.

Self-excitation of the resonator

Usmani et al., PRB 75, 195312 (2007)

Model for $v(V_g)$

· Electrostatic force between tube and backgate:

$$F_{\rm dot} = \frac{1}{2} \frac{\mathrm{d}C_{\rm g}}{\mathrm{d}z} \left(V_{\rm g} - V_{\rm dot} \right)^2 \tag{1}$$

Quantum dot voltage:

$$V_{dot} = \frac{C_g V_g + q_{dot}}{C_{dot}}, \qquad q_{dot}(q_c) = -|e| \langle N \rangle(q_c), \qquad q_c = C_g V_g \qquad (2)$$

· Electrostatic contribution to spring constant:

$$k_{\rm dot} = \frac{V_{\rm g} (V_{\rm g} - V_{\rm dot})}{c_{\rm dot}} \left(\frac{{\rm d}C_{\rm g}}{{\rm d}z}\right)^2 \left(1 - |e|\frac{{\rm d}\langle N\rangle}{{\rm d}q_c}\right) \tag{3}$$

Model for $\alpha(V_g)$

$$\alpha_{\rm dot} = -\frac{{\rm d}^3 F}{{\rm d}z^3} = \frac{{\rm d}^2}{{\rm d}z^2} k_{\rm dot}(q_c) = V_{\rm g}^2 \left(\frac{{\rm d}C_{\rm g}}{{\rm d}z}\right)^2 \frac{{\rm d}^2 k_{\rm dot}}{{\rm d}q_c^2}$$

The sign of α_{dot} follows the sign of the curvature of k_{dot} .

(4)