Molecular states in a one-electron double quantum dot

A.K. Hüttel¹, S. Ludwig¹, H. Lorenz¹, K. Eberl², and J.P. Kotthaus¹

¹ Center for NanoScience and Department Physik, Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539 München, Germany.
² Max-Planck-Institut f
ür Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany.

Material system

Anticrossing at finite U_{SD} , $N \leq 1$

Coordinate transformation U_{gL} , $U_{gR} \rightarrow \Sigma$, Δ

$$\Sigma = \frac{\mu_{\rm R} + \mu_{\rm L}}{2}, \qquad \Delta = \frac{\mu_{\rm R}}{2}$$

$B_{\perp} > 0 \longrightarrow$ additional excited state

• GaAs/AlGaAs heterostructure

- Top gates written by SEM lithography
- Triangular geometry for low electron numbers [1]
- Quantum point contact (QPC) for electrostatic charge detection [2,3]

Double dot charging diagram

Excited single-dot state enters transport window at finite B_⊥ (additional line I* of finite G)
Excitation energy ε*(B_⊥) ~ linear in B_⊥

Second anticrossing at $\Delta, B_{\perp} > 0$

- Sweep of right versus left side gate
- Direct dc-current measurement (left plot)
- \rightarrow Strong interdot coupling, delocalization
- Quantum point contact charge detection (right plot)
- \rightarrow Double quantum dot can be emptied completely
- → Delocalization, continuous charge redistribution between dots at the symmetry line $0/1 \leftrightarrow 1/0$ → No maximum in $\left|\frac{dI_{QPC}}{dU_{gL}}\right|$ at this line [4]

Transport window at finite U_{SD}

-1	l					
-0.25	0	0.25	0.5	-0.25	0	Δ (meV)

- Tunnel splitting $2t_0$ clearly visible and easily quantified (via comparison to eU_{SD})
- Bottom of plot: onset of two-electron charging
 White areas (lhs plot): negative conductance G
 Discontinuity of charging line at Δ* > 0 (rhs plot)
 → tunnel rates to *source* vs. *drain*: t_S/t_D ~ 5

Controlling the tunnel splitting

• Hybridization of localized ground state (right dot) and excited state (left dot) for $eU_{SD} > 2\Delta = \varepsilon^*(B_{\perp})$ $\begin{pmatrix} \Delta & -t_0 & -t_0^* \\ 0 & -t_0 & -t_0^* \end{pmatrix}$

- $U_{\rm SD} = -0.75 \,\mathrm{mV} \rightarrow \mathrm{transport}$ window
- Weak coupling case: triangle expected
- Here: strong tunnel coupling
- Edges of current onset follow **molecular states**

(see model lines, next plot)

- *E*₂: charging energy for the second electron
 Larger |*U*_{gC}| pushes the two dots apart → smaller 2*t*₀, smaller *E*₂
- B_{\perp} compresses the quantum dot states \rightarrow smaller $2t_0$, constant E_2 • Model (WKB & Fock-Darwin) $2t_0 \simeq 2E_0/\pi \exp\left(-\sqrt{2m^*\phi}d/2\hbar\right),$ $d(B) = d_{\infty} - L_{FD}(B),$ $L_{FD}(B) = \sqrt{\frac{\hbar}{\omega_c m^*}} \left(1 + \frac{4\omega_0^2}{\omega_c^2}\right)^{-\frac{1}{4}}$

• Model lines: $H \doteq \begin{bmatrix} -t_0 & -\Delta & 0 \\ -t_0^* & 0 & -\Delta + \varepsilon^* \end{bmatrix}$

References

* A. K. Hüttel, S. Ludwig, H. Lorenz, K. Eberl, and J. P. Kotthaus, cond-mat/0501012 (to appear in PRB).
* A. K. Hüttel, S. Ludwig, H. Lorenz, K. Eberl, and J. P. Kotthaus, cond-mat/0507101 (submitted).
[1] M. Ciorga *et al.*, PRB **61**, 16315 (2000).
[2] M. Field *et al.*, PRL **70**, 1311 (1992).
[3] J. M. Elzerman *et al.*, PRB **67**, 161308 (2003).
[4] J. R. Petta *et al.*, PRL **93**, 186802 (2004).

Many thanks to the German National Academic Foundation for support. This project has been funded by the DFG and the BMBF.