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I. FABRICATION AND DEVICE DETAILS

Both devices A and B have been fabricated in essentially the same way. On a highly p+ doped silicon wafer with a thermally
dry-grown surface oxide, contact electrodes, leads, and bond pads are deposited via optical and electron beam lithography.
Then the silicon oxide surface is anisotropically dry-etched to deepen the trenches between the electrodes. As last step, carbon
nanotube growth catalyst is lithographically deposited at the center of the electrode structure, and chemical vapour deposition
growth is performed [2]. The characteristic fabrication parameters of the two devices are summarized in Table S-I. Given that we
do not image our devices after fabrication, the distance between the contacts provides an approximation for the active nanotube
segment length.

Figure S-1 is a larger version of the characterization measurements already presented in Fig. 1(b,c) of the main text. The
regularity of the transport spectrum and the transition from strong Coulomb blockade close to the electronic band gap to com-
plex, Kondo-dominated behaviour at large positive gate voltage becomes immediately visible. Device B has in [4] also been
characterized in the Fabry-Perot regime in hole conduction, resulting in an electronic length of ∼ 1 µm.

All data has been recorded using the Lab::Measurement software package [5].

II. CAPACITIVE SENSITIVITY

The sensitivity of the gate capacitance Cg on the nanotube position z depends on several parameters that are experimentally
not well-known. In the fit procedure for the results on device A discussed in the main manuscript and below, we have therefore

device A device B

contact metal Re Ti / Pt
contact film thickness 40nm 10nm / 40nm

distance between the contacts / trench width 700nm 1200nm
initial wafer silicon oxide thickness 300nm 500nm

etch depth ∼160nm 100nm
relevant other publications [3] [4]

Supplementary Table S-I. Fabrication parameters for devices A and B.

∗ andreas.huettel@ur.de

mailto:andreas.huettel@ur.de


2

V (V)g

0.0001

0.001

0.01

0.12
d
I/
d
V

(e
/h

)

1.0 1.5 2.0 2.5 3.0 3.5 4.0

40 44 48363228242016128
1

device A

N

device B

N8 70 242 270

0.5 1.0 1.5 4.5 5.0
0.001

0.01

0.1

V (V)g

2
d
I/
d
V

(e
/h

)

1

Supplementary Figure S-1. Larger version of Fig. 1(b,c) of the main text: low-bias differential conductance dI/dVsd of carbon nanotube
devices A and B as a function of applied back gate voltage Vg. The number of trapped electrons N is indicated.

used dCg/dz as a free parameter, resulting in

dCg

dz
=−27

zF
nm

(S-1)

In the following, we estimate this parameter independently and discuss error sources.
A typical simplified model for the gate capacitance of a suspended carbon nanotube is that of a metallic cylindrical beam

above a conductive plane,

Cth
g =

2πε0L
ln
[ 2z

r

] (S-2)

where L is the beam length, z the distance between beam and plane, and r is the beam radius. We can estimate the length of
our nanotube L with the distance between the contact electrodes, L = 700nm. Since we do in general not image our devices
before measurement to avoid contamination, and since this particular device did not survive a subsequent attempt at Raman
spectroscopy, we do not know the precise nanotube position or orientation, and larger values are well possible.

The radius of the nanotube is similarly hard to quantify. Measurements of the single electron magnetic moment on the same
device result in R = 2.2nm [3], though the used model (as published originally in [6]) likely does not capture the entire required
physics [3]. The distance between nanotube and gate can be approximated as the sum of gate oxide thickness and contact
electrode thickness, z = 340nm. This does not take possible slack of the nanotube into account, nor the layer structure of 200nm
vacuum (electrode thickness plus etch depth) and 140nm SiO2 (remaining oxide) with εr = 3.9. With above approximations, we
obtain

Cth
g = 6.8aF (S-3)

compared to the value Cg = 2.4aF from transport spectroscopy.
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The localized electronic system of the quantum dot does not occupy the entire length of the nanotube; we use this to define an
electronic length Lel < L such that the calculated gate capacitance becomes equal the measured one,

Lel =
Cg

Cth
g

L = 250nm. (S-4)

Using this length in Eq. S-2 and assuming a uniform deflection along the quantum dot, we obtain at z = 340nm

dCg

dz

∣∣∣∣
z=340nm

=−1.2
zF
nm

, (S-5)

approximately smaller by a factor 20 than the fit result. A likely conclusion is that our suspended nanotube lies closer to the gate
than expected, however, given the many approximations and unknowns no definite statement can be made.

III. GATE VOLTAGE DEPENDENCE OF THE RESONANCE FREQUENCY

Both for displaying the observed resonance frequency behaviour more clearly and for improving the numerical stability of
the fit results, as first step a linear contribution is subtracted from the raw resonance peak positions in Fig. 2(a) of the main text.
The resulting resonance frequency shift, converted to angular frequency, is plotted in Figs. 2(d) and 3(a) of the main text (data
points):

ω̃0(Vg) = 2π f0(Vg)− (a+bVg), a = 2041×106/s, b = 261.9×106/Vs (S-6)

As detailed in [7], the gate voltage dependence of the mechanical resonance frequency in Coulomb blockade consists of
essentially three terms:

a), a continuous increase, corresponding to the continuous increase of the gate charge and the respective tension component,

b), a step function, corresponding to the stepwise increase of the quantum dot charge and the respective tension component,
and

c), “frequency dips” corresponding to the softening of the spring constant by charge fluctuation whenever single electron
tunneling is possible.

Approximating term a) as linear within the evaluated gate voltage region, we obtain as model

ω0(Vg) =

a)︷ ︸︸ ︷
a′+b′Vg+

b)︷ ︸︸ ︷
κ 〈N〉(Vg)+

c)︷ ︸︸ ︷
∆ω0(Vg) . (S-7)

As already discussed in the main text, we assume the density of states on the quantum dot to be a sequence of two equal-
width Lorentzian peaks, aligned with the Fermi edge of the grounded drain contact at gate voltages Vg1 and Vg2, and separated
by a corresponding charging energy. Tunnel barrier transparencies for both contacts are equal and energy-independent. In zero
temperature approximation, the Fermi distribution in both leads becomes a step function, offset by the small source-drain voltage
Vsd. Following [8], as an example, the tunnel rate into (+) the level corresponding to Coulomb oscillation 1 from the contact L
(source) then becomes

Γ
+
1L(Vg) = a

(
1
2
+

1
π

arctan
(

2e(Vsd +(−Vg +Vg1)α)

Γh̄

))
(S-8)

Writing Γ
+/−
1/2 = Γ

+/−
1/2L +Γ

+/−
1/2R and treating the occupation of the two levels as independent of each other, the time-averaged

charge occupation of the quantum dot 〈N〉(Vg) becomes

〈N〉(Vg) = N0 +
Γ
+
1

Γ
+
1 +Γ

−
1
+

Γ
+
2

Γ
+
2 +Γ

−
2

(S-9)

For the derivation of the frequency “dips”, term c), we then use the expression from [7, 8],

∆ω0 =
Vg(Vg−VCNT)

2mω0CΣ

(
dCg

dz

)2(
1− e

Cg

∂ 〈N〉
∂Vg

)
. (S-10)
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description parameter source value

bias voltage Vsd set in measurement 0.1mV
nanotube length L device geometry 700nm
nanotube radius R from [3] 2.2nm
nanotube mass m from L and R 7.4ag

gate capacitance Cg CB evaluation 2.4aF
total capacitance CΣ CB evaluation 44aF

gate lever arm α CB evaluation 0.055
initial electron number N0 CB evaluation 40

approx. resonance frequency ω0 Fig. 2 3.13×109/s
lifetime broadening of levels Γ fit result 3.41×1012/s

constant frequency offset a+a′ fit result 2.01 ×109/s
linear frequency increase b+b′ fit result 0.237 ×109/Vs

dot charge-related frequency increase κ fit result 3.07×106/s
position CB oscillation 1 Vg1 fit result 4.1084V
position CB oscillation 2 Vg2 fit result 4.1854V

capacitive sensitivity dCg/dz fit result −27 zF
nm

Supplementary Table S-II. Parameters for Fig. 3 of the main text (device A).

Cg and CΣ are obtained from Coulomb blockade (CB) measurements; m is estimated from radius and length of the nanotube (see
above).

In a first fitting step the positions of the Coulomb blockade oscillations, Vg1 and Vg2, are fixed, and the bare tunnel couplings,
the level broadening Γ, the capacitive sensitivity dCg/dz, κ , a′, and b′ are used as free parameters. In a subsequent second fitting
step, the bare tunnel couplings and the level broadening Γ are fixed and the capacitive sensitivity dCg/dz, κ , a′, b′, Vg1, and Vg2
are used as free parameters.

The resulting values are summarized in Table S-II.

IV. COMPARISON WITH GERLAND ET AL. [1]

Figure S-2 illustrates the analogy between our measurement data, Fig. 3 of the main text, and the results of Gerland et al.
[1], Fig. 3(c,d) there. The data points and the thick, red solid lines in the three panels display our experimental data and our fit
results, respectively, in the same way as Fig. 3 of the main text. The thin black lines in panels (b) and (c) of Fig. S-2 display the
values for the transmission amplitude

∣∣t(Vg)
∣∣ and the transmission phase φ(Vg) extracted from [1], Fig. 3(c,d).

For T = 0 and Vsd = 0 Gerland et al. calculate 〈Nσ 〉, where σ indicates the spin, from the Bethe ansatz; using Friedel’s
sum rule and results from Fermi liquid theory they obtain φσ = 〈Nσ 〉π and |tσ | = sin(φσ ). The result is plotted in Fig. S-2
for h̄Γ =U/25 (solid), h̄Γ =U/4π (dashed), and h̄Γ =U/6 (dotted). Its x-axis has been rescaled such that the bare resonance
positions (−εd/U = 0 and −εd/U = 1 in [1]) coincide with the bare resonance positions given by our fit, cf. Table S-II.

Given that the calculation is for the limit T = 0 and Vsd = 0, we cannot expect perfect agreement. The phase / charge corre-
spondence in Fig. S-2(c) indicates that the experiment corresponds to a rather small ratio U/h̄Γ, with the best correspondence
given by the curve for U/h̄Γ = 6 (dotted line). From our experiment and its model fit we obtain Uexp = eα(Vg2−Vg1) = 4.2meV
and h̄Γ = 2.2meV, resulting in U/h̄Γ = 1.9. In the transmission / current correspondence, more distinct differences between the
curves occur. Possible origins of these include the finite bias voltage and temperature as well as an experimental situation that
goes beyond SU(2) Kondo effect.

Nevertheless, both features discussed in the main text are clearly visible in the experimental data as well as in the calculation
from [1]: i), the approximate phase / charge plateau in the gate voltage region of the Kondo conductance ridge, and ii), the distinct
“inwards shift” of the large conductance region towards the Kondo ridge center, compared to the bare resonance positions.
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Supplementary Figure S-2. Detail comparison of our measurement and our fits with the theoretical results from [1]; extended version of
Fig. 3 of the main text. Kondo regime around 〈N〉= 41; Vsd =−0.1mV. (a) Data points: resonance frequency shift ω̃0(Vg). Thick, red solid
line: curve fit assuming the subsequent occupation of two non-degenerate levels. (b) Data points: measured off-resonant current |I|(Vg). Thick,
red solid line: sequential tunneling only current according to the fit model from (a); both left axis. Thin solid, dashed, and dotted black lines:
rescaled calculation results from [1], Fig. 3(c), transmission magnitude |t| through a Kondo resonance for T = 0 and h̄Γ =U/25, U/4π, U/6;
right axis. (c) Thick, red solid line: time-averaged quantum dot occupation 〈N〉(Vg) derived from the fit in (a); left axis. Thin solid, dashed,
and dotted black lines: rescaled calculation results from [1], Fig. 3(d), for the transmission phase φ ; h̄Γ =U/25, U/4π, U/6; right axis. Thick
vertical lines: bare resonance positions, thin vertical lines: approximate locations of maximal slope of φ(Vg).
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