

Transport spectrum, $T \approx 25\,\mathrm{mK}$

High field behaviour

Wave function shapes in $B_{||}$

- Carbon nanotubes grown *in situ* across contacts
- \rightarrow No chemical or mechanical damage
- \rightarrow No resist residues, no e-beam irradiation
- Clean few-electron system [2, 3, 1]
- Spectroscopy of one- and two-electron states

Low-field behaviour

• Linearized single particle Hamiltonian

 $\hat{H}_{CNT} = \underline{\varepsilon_d} \hat{I}_{\sigma} \otimes \hat{I}_{\tau} +$ vallev mixing spin-orbit interaction $+ \frac{g_{s}\mu_{B}|\dot{B}|}{|B|}$ $(\cos \varphi \, \hat{\sigma}_z + \sin \varphi \, \hat{\sigma}_x) \otimes \hat{I}_\tau +$ Zeeman effect

Questions

- Amplitude variation of the conductance peaks
- Magnetic field dependence of tunnel rates
- Modification of electronic wave function?
- Deviation of the slopes $dE/dB_{||}$
- -Anomalous magnetic moments?
- Second "longitudinal shell" (?) at very low energy
- -Shell spacing / momentum quantization not consistent with a box potential

Boundary conditions [5]

• (Initially) downsloping lines, G: from $\sim \lambda/2$ to $\lambda/4$ to $\lambda/2$; d*I*/d*V* increases, then decreases • Upsloping lines, \bigcirc : dI/dV decreases fast

Energy / magnetic moment

- High-level parameters Δ_{SO} , $\Delta_{KK'}$, Δ_{\parallel} , ...
- Fit has additional corrections

Full dispersion relation [4]

Zigzag nanotube:

- Cut, minimizing dangling bonds \longrightarrow one sublattice at one end, the other at the other end!
- "Cross-quantization" of κ_{\perp} and $\kappa_{||}$
- Not a quantum "box", more a " $\lambda/4$ resonator"
- Very similar for chiral nanotubes

- Fit improves with cross-quantization
- Magnetic moment "offset"?
- Low-lying (1.6 meV) second shell: same $\kappa_{||}$ (!)

Origin of the second shell?

• Additional degeneracy at same $\kappa_{||}$ • Bundle of two CNTs?

150

200

• Set of real solutions $\kappa_{||}(\kappa_{\perp})$

• Magnetic field $B_{||}$ selects κ_{\perp} (vertical dotted line) • Field shifts nodes of wave function to the end; " $\lambda/4$ to $\lambda/2$ " tuning

• $B_{||}$ modifies the quantum dot — lead coupling, and thereby the tunnel rates

References

[1] M. Margańska *et al.*, in preparation (2017) [2] D. R. Schmid *et al.*, Phys. Rev. B **91**, 155435 (2015) [3] A. Dirnaichner *et al.*, PRL **117**, 166804 (2016) [4] W. Izumida *et al.*, JPSJ **78**, 074707 (2009) [5] M. Marganska *et al.*, Phys. Rev. B **83**, 193407 (2011) [6] M. del Valle *et al.*, Phys Rev. B **84**, 165427 (2011)

We gratefully acknowlegde funding by the DFG via the Emmy Noether grant Hu1808/1 "Carbon nanotubes as electronical and nano-electromechanical hybrid systems in the quantum limit", GRK 1570 "Electronic Properties of Carbon Based Nanostructures", and by the German National Academic Foundation.