MoRe as CNT growth-compatible superconductor^[1, 2] S. Blien, K. Götz, N. Hüttner, O. Vavra, T. Huber, T. Mayer, Ch. Strunk, and A. K. Hüttel UR Institute for Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany

Motivation

• ultra-clean carbon nanotubes: directly grown over prefabricated contact electrodes [3, 4, 5, 6] • growth conditions: 850°C for 10-15 minutes in CH_4/H_2 -atmosphere, plus heating / cooling

Influence of the CVD process

 reduction of molybdenum oxides to atomic Mo • structural changes in the bulk, f.ex. from

Temperature dependence (II)

• low temp.: two-level systems in substrate [11] $\frac{\delta f_{\mathsf{r}}}{f_0} = \frac{F\vartheta}{\pi} \left[\mathsf{Re}\Psi\left(\frac{1}{2} + \frac{1}{2\pi \mathsf{i}}\frac{hf_{\mathsf{r}}(T)}{k_{\mathsf{B}}(T)}\right) - \ln\left(\frac{1}{2\pi}\frac{hf_{\mathsf{r}}(T)}{k_{\mathsf{B}}(T)}\right) \right]$ $\frac{1}{O_{i}} = F \vartheta_{\text{eff}} \tanh\left(\frac{hf_{r}(T)}{2k_{\text{B}}T}\right)$

• MoRe alloys: high stability, superconducting critical temperatures up to $T_c = 15 \text{ K}$ [6, 7, 8]

Co-sputtering

• base pressure range: from 10^{-8} to few 10^{-7} mbar

• distances: targets ca. 15 cm sample ca 13.5 cm above

• Ar plasma ignition: first at Mo target at 10⁻¹ mbar then at Re target at 10⁻³ mbar

Resulting tunable alloys

- XPS, *in situ* Ar sputtering; use area sensitivity factors for Re 4f-, Mo 3d-, C 1s-, and O 1s-peaks observations for all films: molybdenum oxides on the surface, no rhenium oxides detectable

 $Mo_{20}Re_{80}$ to $Mo_{31}Re_{69}$

DC conductance properties

 both annealing and degradation due to CVD • Mo₂₀Re₈₀ exhibits highest resilience in dc • maximal critical current density $j_{c} = 2.7 \cdot 10^{5} \frac{A}{mm^{2}}$ observed after 10 minutes CVD

Coplanar resonators

• $\lambda/4$ -resonators \longrightarrow high frequency properties • fit transmission resonances [11], extract Q_i , Q_c

• from $f: F \vartheta \approx 4.0 \cdot 10^{-5}$ unchanged by CVD • from Q_i : $F \vartheta_{\text{eff}} = 5.7 \cdot 10^{-7} \xrightarrow{\text{CVD}} 1.6 \cdot 10^{-6}$ $(\vartheta_{\text{eff}} \text{ accounts for partial TLS saturation})$ • after CVD, Q_{other} dominates fit (\longrightarrow ?)

Prefabricted alloy targets

• use prefabricated alloy sputter targets instead of co-sputtering

• tests with nominal $Mo_{30}Re_{70}$ and $Mo_{70}Re_{30}$

• No large differences in dc properties

	Mo ₃₀ Re ₇₀		Mo ₇₀ Re ₃₀		
	no CVD	15min CVD	no CVD	15min CVD	
<i>T_c</i> (K)	7.8	8.1	7.6	7.4	
$j_c (10^3 \text{ A/mm}^2)$	25	26	26	21	
$ ho_{RT}$ ($10^{-7}\Omega$ m)	5.6	6.9	4.6	2.6	
$ ho_{\sim 10 { m K}}~(10^{-7} { m \Omega m})$		6.7	4.4	1.9	

• Re enrichment in bulk, Mo at surface [9]

Influence of the CVD process

• after CVD: $Q_i \leq 5000$ observed

• high temp.: Mattis-Bardeen theory [12, 13]

$$\frac{\delta f_{\mathsf{r}}}{f_0} = \frac{\alpha_0}{2} \frac{\delta \sigma_2}{\sigma_2} \qquad \delta \left(\frac{1}{Q_{\mathsf{i}}}\right) = \alpha_0 \frac{\delta \sigma_1}{\sigma_2}$$

• kinetic inductance fraction $\alpha_0 = 0.22 \xrightarrow{\text{CVD}} 0.26$

$Mo_{30}Re_{70}$ vs. $Mo_{70}Re_{30}$

• resonator characterization at T = 4 K: tentatively, larger values of Q_i for Mo₇₀Re₃₀

$Mo_{30}Re_{70}$, no CVD			$Mo_{70}Re_{30}$, no CVD			
#	f (GHz)	Q_i	#	f (GHz)	Q_i	
1	3.39	1715	1	3.08	9530	
2	3.66	1600	2	3.35	11010	
3	4.13	1480	3	3.48	830 (?)	

• consistent with literature [6]

• however, large scatter between devices

References

• diffusion of carbon into the alloy, enhanced with increasing CH₄ gas flow

• $Q_i(T) \leftrightarrow$ finite quasiparticle lifetime [14]?

[1] K. Götz et al., Nanotech. 27, 135202 (2016). [2] S. Blien et al., phys. stat. sol. (b) 253, 2385 (2016). [3] J. Kong *et al.*, Nature **395**, 878 (1998). [4] J. Cao et al., Nature Materials 4, 745 (2005). [5] A. Dirnaichner *et al.*, PRL **117**, 166804 (2016). [6] V. Singh et al., Appl. Phys. Lett., 105, 222601 (2014). [7] L. Testardi *et al.*, Sol. St. Com. **9**, 1829 (1971). [8] J. Talvacchio et al., J. L. Temp. Phys. 64, 395 (1986). [9] V. Seleznev et al., SC. Sci. Tech., 21, 115006 (2008). [10] M. Aziz *et al.*, Appl. Phys. Lett., **104**, 233102 (2014). [11] D. Pappas et al., IEEE Trans. Appl. Superc., 21, 871 (2011).

[12] D. Mattis *et al.*, Phys. Rev., **111**, 412 (1958). [13] J. Gao et al., J. L. Temp. Phys., **151**, 557 (2008). [14] M. Žemlička et al., Phys. Rev. B 92, 224506 (2015).

