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I. SAMPLE FABRICATION AND EXPERIMENTAL SETUP

As electrode material, a 10/40 nm Ti/Pt bilayer is patterned on top of a degenerately doped Si substrate with a
500 nm thick insulating capping layer, see Fig. S1. In order to avoid contamination of the CNT, we grow the carbon
nanotube as a last fabrication step across the contact electrodes separated by a 1.2µm trench.1 The identification
of a promising device is done solely via room temperature transport measurements using a probe station. This is
necessary to avoid contamination of the nanotube. The transport measurements presented in the main text, Fig. 1,
were recorded at a base temperature of 15 mK in a 3He/4He dilution refrigerator. All data shown in the main text
is recorded in a standard DC measurement setup, see schematics in Fig. S1. Voltage sources are connected to the
source contact and to the doped substrate while the drain contact is grounded. The current is measured at the drain
contact using a current-voltage converter. The conductance data is obtained by numerical derivation.

II. FOURIER ANALYSIS AND ESTIMATION OF THE AVERAGE LENGTH OF THE ELECTRONIC
PATH

Within this section we analyze some consequences of the application of Eq. (1) of the main text. Eq. (1) describes
the transmission originating from two independent channels a and b, i.e., channels with no scattering into each other.
Therefore it strictly applies to armchair, zigzag and zigzag-like CNTs. However, the following analysis provides an
insight on the suppression of higher harmonics in armchair-like CNTs as well.

Let us have a closer look at the transmission formula, Eq. (1) of the main text. We focus on the case of armchair
CNTs, where the phase relation can be written as φj(Vg, L) = 2kj(Vg)L, where kj = kj,l = kj,r for both channels
j ∈ {a, b}. The transmission then becomes

T (Vg) = 2
∑

j∈{a,b}

T (kj) = 2
∑

j∈{a,b}

|t1|2|t2|2

(1− |r1||r2|)2 + 4|r1|r2| sin2[kjL]
. (S1)
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FIG. S1. Electron micrograph of a chip similar to the measured device. The Pt/Ti structures on top of the Si/SiO2 are clearly
visible. In the center of the triangular structure a residual of the catalyst can be found. Schematic drawings indicate the
measurement circuit.

The average length of the electron path in the interferometer can be calculated by considering the probability to
perform n laps, Pn = (|r1|2|r2|2)n, multiplied by the path length 2nL, i.e.,

lavg = L+ |r1|2|r2|22L+ · · ·+ (|r1|2|r2|2)nn2L+ · · · =
[
1 +

2|r1|2|r2|2

(1− |r1|2|r2|2)2

]
L, (S2)

where the first term reflects the directly transmitted electron. To calculate the Fourier coefficients we note that T (kj)
in Eq. (S1) is even and π/L-periodic as a function of kj . Therefore it can be expanded in a Fourier series,

T (k) =
∑
n

αn cos(2nkL),

with the Fourier coefficients

αn =
L

π

∫ π/2L

−π/2L
T (k) cos(2nkL)dk .

While the calculation of the coefficients in general is cumbersome, it can be shown that the ratio of two coefficients
yields the product of the two reflection coefficients, i.e.,2

αn+1

αn
= |r1||r2|.

The coefficients can thus be written as

αn = α0(|r1||r2|)n, (S3)

where m = n + 1 is the harmonic order, i.e., mf1 = fm. Fig. S2 shows fits of Eq. (S3) to the amplitudes of the
Fourier transform (Fig. 1(d) of the main text). Note that the amplitudes of the harmonics in the FT are oscillating
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FIG. S2. Amplitude decay of the amplitudes of the frequency components in the Fourier transform shown in Fig. 1(d) of
the main text. The graphs are displayed on a logarithmic scale. n is the harmonic order with nf1 being the frequency
of the n-th harmonic component. The stars denote peak positions that are used for the fit to Eq. (S3) (dashed line). (a)
Amplitudes averaged over a gate voltage range of −15 V < Vg < −5 V. (b) Amplitudes averaged over a gate voltage range of
−5 V < Vg < 0 V.

when we change the gate voltage, see Fig. 1(d). Since this is not accounted for in Eq. (S3), we have to average the
FT amplitude over a gate voltage range that includes multiple periods of the slow modulation to compare the FT
data to Eq. (S3). To this end, we divide the full gate voltage range into two ranges, [−15 V,−5 V] and [−5 V,−0 V].
The average of the FT amplitudes for the two ranges is shown in Fig. S2(a,b), respectively, as a function of n. We
fit Eq. (S3) to the curve and extract the product |r1||r2| of the reflection coefficients. This product can be used in
Eq. (S2) to obtain the average electronic path length. We obtain l1 = 2.6L and l2 = 3.3L for the [−15 V,−5 V] and
the [−5 V,−0 V] gate voltage range, respectively.

III. TRANSFER MATRIX APPROACH

Using a simple (non-unitary) transfer matrix description of the system,3 we can understand the evolution of the
slow modulation of the conductance in armchair-like CNTs from the mixing of the channels upon reflection at the
contacts. We consider two waves in the channels a and b before and after the scattering event. For simplicity, we
consider only one pair of incident waves from one side of the cavity and one pair of outgoing waves on the other side
of the cavity. Since we do not study the full scattering problem, which would include both in- and out-going waves on
both sides of the cavity, the amplitudes can not be related to probabilities. The initial and final states are represented
by the vectors

|i〉 =

(
a
b

)
(initial) and |f〉 = M|i〉 (final),

where M is a (complex) two-by-two transfer matrix and a and b are complex numbers characterizing the plane waves
before entering the cavity. Although M is not describing the full scattering problem, the squares of the amplitude of
the transmitted wave |f〉 in the two channels reproduce the transmission T , i.e.,

T ∝
∑
ij

|Mij |2. (S4)

M is constructed from a product of matrices which describe the effect of different elements of the cavity on the wave
function. In particular, the transmission through the (symmetric) left and right barriers is described by matrices

T = Tl = Tr =

(
t 0
0 t

)
.
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where the coefficients t are real for simplicity. Passing through the CNT we acquire gate voltage dependent phases
φa(Vg) and φb(Vg) in the two modes, respectively:

Tc =

(
eiφa 0

0 eiφb

)
.

The reflection at the two interfaces is described by

R = Rl = Rr =

(
r r′

r′ r

)
,

where r′ induces a mixing of the channels.
We calculate M taking into account two different electron paths in the cavity. This is the minimal ingredient to

observe wave interference in the transmitted signal. The first electronic path is one where the electron is directly
transmitted, while in the second path it travels one extra lap before leaving the cavity. The transfer matrix reads

M = TTcT + TTcRTcRTcT = TTc(1 + RTcRTc)T. (S5)

When we relate M to the transmission using Eq. (S4), the matrices TTc and T outside the bracket only add global
phases and amplitudes to the diagonal elements. The global phases vanish when taking the absolute values and the
global amplitudes are not important for our argument. Evaluating the part in brackets in Eq. (S5), we obtain

1 + RTcRTc =

(
1 + r2e2iφa + r′2ei(φa+φb) rr′(ei(φa+φb) + ei2φb)
rr′(ei(φa+φb) + ei2φa) 1 + r2e2iφb + r′2ei(φa+φb)

)
. (S6)

In the pure armchair case r′ = 0, so we end up with a diagonal matrix and obtain, using Eq. (S4),

T ∝
2∑

n=1

|[1 + RTcRTc]nn|2 = 2
{

1 + r4 + r2 [cos(2φa) + cos(2φb)]
}
, (S7)

where [M ]ij refers to the matrix element Mij . The transmission can be identified as a beat of two waves with phases
φa 6= φb as a function of the gate voltage.

When we allow for r′ 6= 0, the square of the absolute values of a diagonal entry of the matrix in Eq. (S6),∣∣[1 + RTcRTc

]
11

∣∣2 = 1 + r4 + 2r2 cos(2φa) + 2r′2 cos(φa + φb) + 2r2r′2 cos(φa − φb) +O(r′4), (S8)

is proportional to the cosine of the phase difference φa − φb. Note that the off-diagonal entries,∣∣[1 + RTcRTc

]
12

∣∣2 =
[
1 + RTcRTc

]
21

= 2r2r′2 (1 + cos(φa − φb)) , (S9)

contain these phase differences, too. They are responsible for the slow oscillation of the conductance and its sliding
average.

In Fig. S3 we plot
∑
ij |Mij |2 as a function of energy for different values of r′. To obtain the plots, we write the

function φj(E) as a second order polynomial with a slightly different coefficient in front of the quadratic term for
the two channels j. This reflects a different dispersion relation of the two channels. In Fig. S3(a), the mixing is
absent, r′ = 0, and Eq. (S7) shows a beat. The hull curve evolves with a phase φa−φb, see Fig. S3(a), exhibiting two
maxima of transmission within one period. The average of the transmission calculated over a few periods of φa or
φb is constant since both constituents of the transmission function bear a constant average. In (b), the finite mixing
r′ leads to a deformation of every second anti-node (i.e., regions with constructive interference). The sliding average
(green line in (b)) is slightly modulated. The even stronger channel mixing in Fig. S3(c) induces a more prominent
modulation of the transmission as a function of the phase difference. Finally, in Fig. S3(d) via complex values of
r′R/L a phase shift of the wavefunction upon reflection at the barriers is introduced. This leads to additional regions

of apparent frequency doubling which occur next to the maxima of the sliding conductance average, similar to the
measurement data of Fig. 1(b) in the main manuscript.

IV. TIGHT-BINDING CALCULATIONS

For our numerical calculations we use a tight-binding Hamiltonian for the description of the CNT. We consider
interactions up to first-nearest neighbors and we restrict ourselves to one 2p orbital per atom. The 2p orbitals give rise
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FIG. S3. The sum
∑

ij |Mij |2 plotted as a function of energy in arbitrary units. The green line is the sliding average of the

black line. φa(E) and φb(E) are given by second order polynomials with slightly different quadratic prefactor. (a) r′ = 0, no
mode mixing occurs and a beat can be observed. The sliding average is constant. (b,c) Mode mixing is increased to r′ = 0.3 (b)
and to r′ = 0.9 (c). The off-diagonal terms induce a slow modulation of the signal that is reflected also in the sliding average.
(d) In addition, phase shifts of the wavefunction upon reflection at the contacts are introduced. While the slow modulation of
the sliding average remains present, additionally regions of apparent frequency doubling appear.

to the π and π∗ bands, which are responsible for the CNT’s conduction as the next molecular orbitals lie energetically
far apart.

The Hamiltonian describing our systems reads

H0 =
∑
i

ε2pc
†
i ci +

∑
〈i,j〉,i6=j

tijc
†
i cj , (S10)

where the indices 〈i, j〉 indicate nearest neighbor atom sites and the summation is extended over all the points in
the lattice. The transfer integrals ε2p are the onsite energies and tij are the hopping parameters. Our energy scale
is shifted in order to have vanishing on-site energies, setting ε2p = 0. For the hopping parameter tij we choose
t = −2.66 eV, as we used the Tománek-Louie parametrization for graphite up to nearest-neighbor interactions.4 This
parametrization includes also the σ molecular orbitals, and has been proven to be a consistent parameter set. The σ
orbitals mix with the π molecular orbitals due to the finite curvature. Therefore, to take into account curvature and
include also spin-orbit effects in our calculations, we need a set of parameters containing the Slater-Koster transfer
integrals for the different molecular orbitals. The transfer integrals describing the hopping between nearest neighbors
are not given by constants any more but depend on the relative three-dimensional position of the atoms, and on the
strength of the spin-orbit interaction. The derivation of these transfer integrals can be found in Ref. 5, together with
the spin-orbit coupling parameter used in our numerical calculations. The finite curvature and spin-orbit interaction
do not affect the main secondary interference pattern in our numerical results. For simplicity, calculations in the main
text do not include these effects.

The barriers at the interfaces with the leads are modelled by considering a reduced hopping parameter tcij = 0.73tij
and an enlarged onsite energy ε2p = 0.07 eV for the atoms on the ring that forms the contact to the leads. This
model of the barriers has been used successfully in real-space transport calculations in the Fabry-Perot regime.6 In
the numerical results shown in the main text, all on-site energies on the contact ring are equal. Thus, the barriers
respect the symmetries (rotational, parity) of all CNTs. We consider semi-infinite CNTs as leads to model transparent
contacts. Additional numerical calculations where the hopping parameter and the onsite energy are not only modified
on a narrow ring of atoms, but for an extended contact region, have also been performed and display very similar
interference behavior; see Fig. S7 for an example.

When we consider CNTs with lengths in the range of µm, we need to reduce computational costs by simplifying
the Hamiltonian describing the CNT through the application of decimation techniques.7 For the computation of the



6

1.0

1.5

2.0

1.66

1.68

G

500

1000

-3.6
-2.6
-1.6
-0.6

log(|AFT|/G0)

a)

b)

c)
energy (eV)

0.55 0.50 0.45 0.40 0.35 0.30 0.25 0.20
energy (eV)

freq.

G
(2

e 
/h

))

f1

f2

f3

(10,4)
2

FIG. S4. (a) Transmission of an armchair-like (10,4) CNT (L = 660 nm) from tight-binding calculations including curvature
and spin-orbit effects. The secondary interference pattern, i.e., a modulation of the conductance over a period of 0.05−0.10 eV,
is evident. (b) Average value of (a) obtained using a 0.019 eV-wide sliding window. Slow oscillations of the average conductance
values are clearly visible. The peak positions are marked by filled circles. (c) Fourier transform of the transmission signals in
(a) using a 0.019 eV window function. The amplitudes of the higher harmonic components vary in phase with the fundamental
frequency component with a period ∆EFT.
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FIG. S5. (a) Transmission of a (7,7) armchair CNT (L = 660 nm) from tight-binding calculations including curvature and
spin-orbit effects. The average is constant (green line). (b) Fourier transform of (a) using a sliding 0.015 eV window function.
The amplitudes of the frequency component of harmonic order n vary with a period ∆EFT/n.

coherent transport in these systems, the conductance is calculated within the Landauer approach. We therefore use
the Green’s functions constructed from the real-space Hamiltonians and then make use of the Fisher-Lee relation for
the computation of the conductance.8

In Fig. S4(a) we show the results for the transmission of a (10, 4) armchair-like CNT with a length L = 660 nm.
The secondary interference pattern can be observed. The sliding average of the transmission in (b) follows the slow
modulation of the transmission signal. In contrast, the transmission through the (7, 7) armchair nanotube in Fig. S5(a)
exhibits a beat, and the sliding average (green line) is constant.

The differences between the two geometries manifest themselves also in the Fourier transforms. In the Fourier
transform of the armchair-like CNT in Fig. S4(c) we observe an oscillation of the amplitudes of the different frequency
components fn with energy. This period, labelled by ∆EFT in the plot, is the same for all orders n. On the other
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FIG. S7. Tight-binding calculation of the conductance for an armchair (9,9) CNT (L = 200 nm). The on-site energies ε2p are
asymetrically modified over extended contact regions, with values of ε2p = 5 eV at the top and ε2p = 1 eV at the bottom of
the CNT. No slow modulation of the conductance is observed, since parity symmetry still prevents channel mixing.

hand, in the Fourier transform of the armchair nanotube, Fig. S5(b), the amplitude of the n-th harmonic oscillates
with a period ∆EFT/n.

Symmetry-breaking in the leads

The numerical calculations show that the secondary interference patterns in the Fabry-Perot transport regime
depend on the symmetries of the CNT including their contact regions. That is, when parity symmetry is preserved
in the presence of contacts in armchair CNT based waveguides, a beat pattern as in Fig. S5 will be seen. Zigzag-like
CNT waveguides will show the behavior corresponding to a single channel when the rotational symmetry is preserved
by the contacts, as explained in the main text.

We have tested numerically the robustness of the Fabry-Perot patterns against a breaking of the rotational symmetry
in the contact region of zigzag-like CNTs. The contact regions at both ends are modeled as a ring of atoms terminating
the CNT. In the following, we break the rotational symmetry of the system by choosing largely different on-site energies
on the bottom half of the ring, ε2p = 1 eV, and on the top half of the ring, ε2p = 5 eV. In this way we model the
electric contact to the metallic leads that support the otherwise suspended CNT.

In Fig. S6 we show the calculated conductance for a zigzag-like (9, 6) CNT. We observe a clear deviation from the
single-channel behavior, and a secondary interference pattern including a modulation of the sliding average Ḡ(Vg)
(yellow line in Fig. S6). The slow modulation can be understood from the mixing of the transport channels induced
by the contact asymmetry. This effect is similar to what we observe for armchair-like CNTs. While the mixing is an
intrinsic effect in armchair-like CNTs due to the absence of symmetries preventing it, the extrinsic breaking of the
rotational symmetry is required to induce it also in zigzag-like CNTs.

Achiral zigzag CNTs are not sensitive to symmetry-breaking in the leads. In this case, the induced channel mixing
has no effect because electrons in both channels accumulate the same phase.9 Consequently, the sliding average does
not oscillate over the gate voltage range. Similarly, for armchair CNTs we do not find a modulation of the sliding
average in the presence of asymmetric contacts; see Fig. S7 for a corresponding calculation where extended contact
regions of broken rotational symmetry are used.
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Frequency doubling behavior

One of the characteristic effects accompanying the slow modulation of the conductance is an apparent frequency
doubling of G(Vg) within distinct gate voltage regions of each modulation period, see Fig. 1 of the main manuscript.
These corresponding regions are those where the first harmonic dominates over the fundamental frequency in the
Fourier transform of G(Vg), cf. Fig. 1(b) and Fig. 1(d).

A comparison with the results of the tight-binding calculations shows distinct differences. As examples, for the
armchair-like (10,4) CNT, see Fig. S4, the maxima of the harmonics occur at the same energies as those of the
fundamental frequency, i.e., the fundamental frequency remains always dominant and no apparent frequency doubling
can be seen. For the armchair (7,7) CNT of Fig. S5, even though the average conductance is constant, the harmonics
display different periodicity in Vg compared to the fundamental, leading to small intervals of apparent frequency
doubling whenever the fundamental is weakest. Finally, for the zigzag-like (9,6) CNT with extrinsic symmetry
breaking, see Fig. S6, very similar to the measurement, regular regions of apparent frequency doubling next to the
maxima of the averaged conductance Ḡ(Vg) occur.

The precise interplay of the apparent frequency doubling with chiral class, chiral angle and boundary conditions
still has to be determined and goes beyond the scope of this work. As seen from Fig. S6, also microscopic details
of the contact regions enter here. A comparison with the transfer-matrix calculation of Fig. S3(d) suggests that one
consequence of the rotational symmetry breaking in the contacts might be the introduction of different reflection
phases. In any case, the slow modulation of the average conductance as discussed in the main manuscript allows a
more universal and robust evaluation.

V. ESTIMATE OF THE ERROR IN DETERMINING THE CHIRAL ANGLE

In the Fig. 3 of the main text, error bars indicate a range of acceptable values for the chiral angle θ. This is the
result of an analysis of the three different sources of uncertainty in the evaluation. Those are: the uncertainity in
the distance between Vg = 0 V and the center of the bandgap, ∆Egap, the uncertainty in the gate voltage lever arm
α and in the overlap integral used in the tight-binding model, t = 2.6 ± 0.1 eV.10 We introduce the sources of the
uncertainty in the fit and present P -value maps of the parameter space.

a. The gate voltage lever arm in the hole region We extract the lever arm α in the hole region, i.e., for Vg < 1 V,
by analyzing the FP pattern in the conductance, G(Vg, Vb), Fig. 1(a) of the main text, in three regions with high
conductance, shown in Fig. S8. We assume that in these regions constructive interference leads to a single channel
interference pattern which allows the extraction of the lever arm in accordance with Liang et al. 11 The filled circles
in Fig. S8 highlight the peak positions that are used to determine the gate voltage lever arm, α = ∆Vb/2∆Vg, where
∆Vb and ∆Vg denote the differences in bias and gate voltage between two peaks, respectively. These distances are
highlighted by arrows in Fig. S8(c). From these distances we evaluate α = 0.0210± 0.0007.
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line) of the bandgap is clearly visible, while the right upper edge (drain line) is not cleanly resolved and induces an error in
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The two lines represent the bounds for αgap in the bandgap region.

Notably, the frequency f1 ' 12.8 1
V of the fundamental component in the Fourier map in Fig. 1(d) of the main text

is constant over the whole range up to Vg = −1 V. If the lever arm changed with gate voltage in this range, f1 would
be affected by this change as well. We can therefore assume that the gate voltage lever arm stays approximately
constant in the range −15 V < Vg < −1 V.

b. The bandgap offset When we want to compare the evolution of the phase difference ∆φθ(E) (obtained from the
tight-binding dispersion relation) with the experimental data, we have to measure E from a unique, distinguishable
point, i.e., the Dirac point where conductance and valence band touch in the theoretical model. In the experimental
data, we identify the center of the small bandgap at Vg = 0.28 V with the Dirac point.12 Therefore we have to shift

the experimental points by an energy ∆Egap =
∫ 0.28V

0V
αgap(Vg)dVg. The difficulty in measuring this distance is given

by the variation of the lever arm αgap(Vg) in the vicinity of the bandgap. In Fig. S9(a), the conductance in the
vicinity of the bandgap and the first electronic charging states are shown. From the data, the gate voltage lever arm
within the bandgap can be extracted with 10% accuracy, see Fig. S9(b). The bounds for this value are indicated by
the two lines. The total shift of the values En is given by the area under each line in Fig. S9(b) yielding a range
∆Egap = 0.60± 0.05 eV.

c. The tight-binding overlap integral We fit the experimental data points using the inverse of the CNT tight-
binding dispersion relation kθj,i(E) = [ε(kθj,i)]

−1. The overlap integral t between electrons occupying neighboring sites
in the tight-binding model, t, determines the slope of the dispersion relation and is tightly connected to the electron
group velocity vF = ∂E/~∂k =

√
3at/2. For the overlap integral, a value of t = 2.5 eV is found to describe the graphene

dispersion from theoretical grounds,10 corresponding to a Fermi velocity of vF ≈ 8 · 105 m/s. Experimentally, a value
of t = 2.6 eV is found from the analysis of bandgaps in metallic zigzag CNTs13 and t = 2.7 eV has been used to
fit CNT bandgaps as a function of the radius in chiral nanotubes.14 This value corresponds to a Fermi velocity of
vF ≈ 9 · 105 m/s.

The quality of the fit

The model dispersion is determined by the chiral angle θ, the offset ∆Egap and the overlap integral t. For each set
of parameters we calculate the χ2 value,

χ2(θ,∆Egap, t) =
∑
n

1

σ2
n

[E(n, θ, t)− (En + ∆Egap))]
2
,
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where the values E(n, θ, t) are obtained from the condition ∆φθ(E, t)
!
= 2πn and σn is the error in the estimation of

the peak positions En, which is mainly determined by the error of α for Vg < −2 V. From the χ2 value we calculate
the P -value, P = 1 − Fν(χ2), where Fν is the cumulative distribution function for the χ2 distribution, ν = N −Np

is the number of degrees of freedom, N = 7 is the number of points for the fit and Np = 2 is the number of free
parameters.15 Thereby, apart from the chiral angle θ, the bandgap offset ∆Egap is taken as a free parameter which
is allowed to vary within the bounds estimated above. In Fig. S10 we show P (θ,∆Egap) for different values of the
overlap integral in the tight-binding dispersion relation, t. By setting a threshold value of P < 0.05 for rejecting the
fit, we find that a value of t = 2.7 eV is not consistent with our data, while 2.5 eV ≤ t ≤ 2.6 eV is consistent, see the
left panel in Fig. S10. In addition, the acceptable values for the chiral angle lie in the range 22◦ < θ < 30◦.
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