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I. HARMONICITY AND EXCITATION ENERGY

Figure S1(a) shows a schematic trace dI/dVsd(Vsd) for constant B and Vg. From such traces, the peak distances ∆Vsd1, ∆Vsd2,
∆Vsd3 as indicated in the drawing can be extracted. They correspond to excitation energies ∆ε1, ∆ε2, ∆ε3. The conversion from
bias voltage to energy is based on the capacitances in the quantum dot system and can be illustrated by the sketch of Fig. S1(b).
Given the slopes ∆Vsd/∆Vg of the two edges of the single electron tunneling region in the stability diagram, s1 < 0 and s2 > 0,
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Supplementary Figure S1. (a) Example trace dI/dVsd(Vsd) for constant B and Vg. For each such trace, the distances ∆Vsd between main peak
and first side peak, first side peak and second side peak, and second side peak and third side peak are extracted where possible. (b) Using the
slopes ∆Vsd/∆Vg of the two edges of the single electron tunneling region in the stability diagram, s1 < 0 and s2 > 0, the bias differences ∆Vsd
can be converted to energy differences ∆ε . (c) Resulting excitation energies ∆ε1, ∆ε2, ∆ε3 corresponding to the distances ∆Vsd1, ∆Vsd2, ∆Vsd3,
as extracted from the data of Fig. 2(b) of the main text.
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Supplementary Figure S2. Overview of carbon nanotube longitudinal vibration oscillator quanta ∆ε = h̄ω observed in published literature
[1–8], as function of device length, in comparison with the theoretical result ∆εth(L) = 110meV/L[nm]. Left: unscaled ∆ε(L), linear length
scale; right: ∆ε(L)/∆εth(L), logarithmic length scale.

as indicated in Fig. S1(b), the conversion can be derived from elementary geometry as

∆ε =
1
e

1
1− s1

s2

∆Vsd. (S1)

The result of an evaluation of the data of Fig. 2(b) of the main text is shown in Fig. S1(c). Here, the black squares correspond
to the excitation energy of the first sideband relative to the base electronic state, the red dots to the one of the second sideband
relative to the first sideband, and the blue triangles to the one of the third sideband relative to the second sideband. Within the
scatter originating in noise of the current measurement, no clear dependence on the magnetic field is visible, and the sidebands
display equal behaviour. This indicates equidistant quantum states of a harmonic oscillator, with a field-independent excitation
energy of ∆E ' 60 µeV.

The theoretical value for the energy quantum of the carbon nanotube longitudinal vibration is given by [1]

∆εth =
h
L

√
Y
ρ
, (S2)

where L is the nanotube length, Y is Young’s modulus, and ρ is the nanotube mass density. Assuming ρ = 1.3g/cm3 and
Y = 1TPa, this results in [1]

∆εth ≈
0.11meV

L(µm)
(S3)

For our device with L = 0.7 µm, we obtain ∆εth ' 160 µeV' 2.7∆ε . While there is a clear deviation, our measurement still lies
within the typical scatter of oscillator quanta observed in experimental literature, see Fig. S2.
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Supplementary Figure S3. Impact of the Franck-Condon coupling parameter g on the SET current I(Vsd).

II. g EVALUATION METHODS

The Franck-Condon coupling parameter g describes in the context of single electron tunneling through a carbon nanotube the
spatial shift of the nanotube equilibrium position as harmonic oscillator when an additional charge is added to it. It is defined as

g =
1
2

(
∆x0

xzpf

)2

, (S4)

where ∆x0 is the shift in equilibrium position due to electrostatic forces when adding an electron to the nanotube,

∆x0 = x0(N +1)− x0(N). (S5)

In the denominator,

xzpf =

√
h̄

mω
(S6)

is the characteristic length scale of the harmonic oscillator, describing the wave function extension of the ground state and/or its
zero point fluctuations. For h̄ω = 60 µeV and m = 1.3×10−21 kg [9], we obtain xzpf = 0.9pm.

At finite temperature, a harmonic oscillator can both absorb and emit vibrons. Here, in the limit of low temperature and fast
vibrational relaxation compared to the tunnel rates, we assume that for any single electron tunneling process we start out in the
N electron vibrational ground state. The overlap | 〈Ψ0(N) |Ψn(N +1)〉|2 of the N electron vibrational ground state with a N +1
electron state of n vibration quanta increases with n. This leads to a series of equidistant steps in current I(Vsd) or peaks in
differential conductance dI/dVsd(Vsd), whenever sufficient energy for reaching the next vibrational state becomes available.

The contributions of the vibrational states and thus the current step or conductance peak heights are given by the Poisson
formula [10, 11],

∆In ∝
e−ggn

n!
, n = 0,1,2, . . . (S7)

at an energy nh̄ω from the bare electronic state transition. The resulting step function of the current in absence of thermal or
lifetime broadening is sketched in Fig. S3 for different values of g.

Using Eq. (S7), the values of g(B) plotted in Fig. 2(d) of the main text have been obtained using three different but closely
related evaluation methods:

• method 1: manually adapt a step function to the current I(Vsd)
Since the current decreases again far away from the electronic base line, see the negative differential conductance in
Fig. 2(b) of the main text, we use the maximally achieved value in the vicinity of one electronic base line as theoretical
maximum current.

• method 2a: calculate the area below the differential conductance peaks dI/dVsd(Vsd) of the electronic ground state transi-
tion A0 and the first vibrational side band A1 and use

A1

A0
=

∆I1

∆I0
=

e−gg1

1!
e−gg0

0!

= g (S8)



4

0 1 2 3
0

5

10

15

-20

0

20
dI/dV
(nS)

(a)

B (T)

V
  (

m
V

)
sd

U,?

D,S
?,N

U,NU,?
D,S U,N

D,N U,N
D,S

D,S
D,S

D,S

D,SU,N
D,S

D,?

U,N

?,?

D,S

D,S

?,S

?,S

?,? ?,?

N

?

S

N

?

S

U
(upward):

D
(downward):

2

5

1
1

9

(b)

Supplementary Figure S4. (a) Larger version of Fig. 3(a) of the main text, with all conductance lines marked which have been checked for
harmonic side bands. “U” and “D” correspond to the characteristic upward and downward slope of a single electron orbital magnetic moment
±µorb; “S” indicates the presence, “N” the absence of harmonic side bands. (b) Pie diagrams indicating the occurrence of side bands on
upsloping and downsloping lines.

• method 2b: proceed as in 2a, but use the first and second vibrational side band, with the relation

A2

A1
=

∆I2

∆I1
=

g
2

(S9)

As can be seen in Fig. 2(d) of the main text, the three methods agree well within the error bars. In particular the agreement
between evaluation methods 2a and 2b also confirms the Franck-Condon behaviour of the system.

III. SYSTEMATIC EVALUATION OF THE EXCITATION SPECTRUM

The background plot of Fig. S4(a) is a larger version of Fig. 3(a) in the main text. Here, the black vertical bars indicate how the
observed conductance lines have been divided into segments; the segments have been classified according to their approximate
slope as “U”, “D” (with addition of one electron orbital magnetic moment) or “?” otherwise. Each line segment has been
checked for harmonic side bands. Where these have clearly been found, this is indicated by “S”, where not, by “N”. Due to the
noise level in the data, the decision is not always possible, then leading to a “?” designation.

The pie diagrams of Fig. S4(b) summarize the result. For “U”-lines, in most cases side bands are clearly absent, while they
are almost always present for “D”-lines. The observation that g(B) decreases for decreasing magnetic field (see Fig. 3(f) of the
main text) can explain the occurrence of a “D,N” classification at B ≤ 0.5T and Vsd ∼ 5mV; at very low values of g the side
bands will disappear in the noise background.
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