introduction	preparation
000000	0000000

measurement 0000 explanation 0000 TMDC nanotubes

conclusions & thanks

Microwave optomechanics with a carbon nanotube

 \ldots and some news about MoS_2 too \ldots

Andreas K. Hüttel

University of Regensburg current affiliation: Aalto University, Espoo, Finland

IWEPNM 2020, Kirchberg in Tirol, 13 March 2020

suspended carbon nanotubes: NEMS and quantum transport

D. R. Schmid et al., PRB 91, 155439 (2015), K. J. G. Götz et al., PRL 120, 246802 (2018), M. Margańska et al., PRL 122, 086802 (2019) 👈 🗠 🔍 🔍

ΠR

low-temperature transport: Coulomb blockade

tunnel barriers between contacts and nanotube; low temperature $k_{\rm B}T \ll e^2/C$: quantum dot all following measurements at $T_{\rm base} \lesssim 10 \,\text{mK}$ (unless noted)

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
00000	0000000	0000	0000	000000	00

clean transport spectrum, shell effects

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	000000	0000	0000	000000	00

driven transversal vibrations, "the old-fashioned way"

- transport spectroscopy setup plus rf irradiation
- mechanical resonance visible in time-averaged current

how about doing microwave optomechanics with a nanotube?

C. A. Regal *et al.*, Nature Physics **4**, 555 (2008)

introduction

eparation

easurement

explanation 0000 TMDC nanotubes

conclusions & thanks

highly active field of research

M. Aspelmeyer et al., Rev. Mod. Phys. 86, 1391 (2014)

how about doing microwave optomechanics with a nanotube?

C. A. Regal *et al.*, Nature Physics **4**, 555 (2008)

dispersive optomechanical coupling

moving element modulates CPW resonator capacitance \leftrightarrow optical cavity with moving mirror

M. Aspelmeyer et al., Rev. Mod. Phys. 86, 1391 (2014)

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	000000	0000	0000	000000	00

numbers for dispersive coupling?

		carbon nanotube	graphene drum	aluminum beam
			V. Singh <i>et al.</i> (2014)	C. A. Regal <i>et al.</i> (2008)
mass	т	10 ⁻²⁰ kg		$2 imes 10^{-15}\mathrm{kg}$
resonance frequency	<i>f</i> _{mech}	503 MHz	36 MHz	2.3MHz
quality factor	Q _{mech}	10 ⁴	10 ⁵	10 ⁵
zero point fluct.	x _{zpf}	2pm	30 fm	40 fm
cavity frequency	f _{cav}	5.7 GHz	5.9GHz	5 GHz
cavity Q	Q _{cav}	437	25000	10000
cavity occupation	n _{cav}	$6.75 imes10^4$	$(6.75 imes10^4)$	$(6.75 imes 10^4)$
coupling capacitance	C_{g}	2.6aF	580 aF	
capacitance sensitivity	$\partial C_{\rm g}/\partial x$	1 pF/m		170pF/m
zero-photon coupling	g_0	2.9 mHz	0.83 Hz	0.15Hz
dispersive coupling	$g_0 Q_{ m cav}/f_{ m cav}$	2×10^{-10}	$3 imes 10^{-6}$	3×10^{-7}
sideband cooling rate	$\kappa_{\rm opt}(\propto n_{\rm cav})$	$\sim 10^{-7}{ m Hz}$	0.77 Hz	12mHz

A single-wall carbon nanotube is a great mechanical resonator, but is also annoyingly small.

S. Blien et al., Nature Comm. 11, 1636 (2020); V. Singh et al., Nat. Nano 9, 820 (2014); C. A. Regal et al., Nat. Phys. 4, 555 (2008)

ITR.

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thank
000000	000000	0000	0000	000000	00

we built it anyway (geometry is not everything!)

UR

 introduction
 preparation
 measurement
 explanation

 000000
 0000000
 00000
 00000

TMDC nanotubes

conclusions & thanks

nanotube deposition area

- gate finger connected to cavity
- isolation layer (cross-linked PMMA)
- long resistive meanders as RF block
- four gold electrodes (source, drain, and two for cutting)
- deep-etched areas to allow fork deposition

S. Blien et al., Nature Comm. 11, 1636 (2020)

 preparation

 0000
 00000
 00000

easurement

explanation 0000 TMDC nanotubes

conclusions & thanks

nanotube growth on commercial quartz tuning forks

nominally 1nm Co sputter-deposited as catalyst; growth in high gas flow details: S. Blien *et al.*, PSSb **255**, 1800118 (2018)

introduction 000000 preparation

easurement

explanation 0000 TMDC nanotubes

conclusions & thanks

nanotube deposition

lower fork, detect contact electrically, burn outer segments with current, retract fork details: S. Blien *et al.*, PSSb **255**, 1800118 (2018)

introduction 000000 reparation

measurement

explanation 0000 TMDC nanotubes

conclusions & thanks

now this is cooled to 10mK

< □ ► ୬ ९ < CIR

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	000000	0000	0000	000000	00

optomechanically induced (in)transparency (I)

- strong drive at $f_{drive} = f_{cav} f_{mech}$ (red sideband)
- probe transmission with weak signal f_{probe} near f_{cav}
- when f_{probe} − f_{drive} = f_{mech}: interaction with mechanics → signal loss

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	0000000	0000	0000	000000	00

optomechanically induced (in)transparency (II)

- clear OMIT feature for $f_{\text{probe}} f_{\text{drive}} = f_{\text{mech}}$
- intransparency due to specific cavity / detection arrangement
- would not be visible with $g_0 \sim 10 \,\mathrm{mHz}$ (even at high drive power)
- obviously something was missing in the theory

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thank
000000	0000000	0000	0000	000000	00

optomechanically induced (in)transparency (III) - now with gate!

- we trace the OMIT signal over a sharp CB oscillation
- "dip" position \leftrightarrow $f_{\mathsf{mech}}(V_g)$
- depth, width of "dip" \leftrightarrow optomechanical coupling g
- fit each trace, extract $g(V_g)$
- large on flanks of SET peak $g \simeq 20 \text{ kHz}$ $g_0 = g/\sqrt{n_{\text{cav}}} \simeq 95 \text{ Hz}$
- in Coulomb blockade & at degeneracy point zero / no signal

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	000000	0000	●000	000000	00

another type of capacitance

• Capacitance "seen" by the coplanar resonator:

$$C_{\text{CNT}} = e \, rac{\partial \langle Q_g
angle}{\partial V_g} = \dots = e \, rac{C_g}{C_\Sigma} \, rac{\partial \langle N
angle}{\partial V_g} + ext{const.}$$

- The nanotube moves \longrightarrow C_g changes by δC_g \longrightarrow the Coulomb oscillations shift in V_g
- We define an *effective gate voltage modulation* equivalent to the motion:

$$\mathit{C_g} \, \delta \mathit{V_g^{ ext{eff}}} = \mathit{V_g} \, \delta \mathit{C_g}$$

This results in

$$\frac{\partial C_{\text{CNT}}}{\partial x} = \frac{\partial C_{\text{CNT}}}{\partial V_g^{\text{eff}}} \frac{\partial V_g^{\text{eff}}}{\partial x} = \dots = e \frac{\partial^2 \langle N \rangle}{\partial V_g^2} \frac{V_g}{C_{\Sigma}} \frac{\partial C_g}{\partial x}$$

amplification factor!

・ つ へ の

S. Blien et al., Nature Comm. 11, 1636 (2020); similar concepts in articles of E. Laird, M. Sillanpää, T. Duty

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	000000	0000	0000	000000	00

Coulomb blockade enhancement of coupling

V_g (V) -1.19 -1.188 -1.186 charge <N> С_{слт} (aF) q-capacitance $\alpha \left| \frac{d}{dV_{a}} \right|$ dl/dV 5 (a.u.) ٢ 30 $\alpha \frac{d}{dV_a}$ coupling 100 80 20 **g/2π** g₀/2π (kHz) (Hz) 10 20 0 0 V_g (V) -1.19 -1.188 -1.186

 $\langle N \rangle (V_g)$: tunneling through Lorenz-broadened level, width Γ

$$\frac{\partial C_{\text{CNT}}}{\partial x} = e \frac{\partial^2 \langle N \rangle}{\partial V_g^2} \frac{V_g}{C_{\Sigma}} \frac{\partial C_g}{\partial x}$$
$$g_0 = \frac{\omega_{\text{cav}}}{2C_{\text{cav}}} \frac{\partial C_{\text{CNT}}}{\partial x} \Big|_{x=0} x_{\text{zpf}}$$
insert device values ...

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	000000	0000	0000	000000	00

Coulomb blockade enhancement of coupling

V_g (V) -1.19 -1.188 -1.186 <N> C_{CNT} (aF) $\alpha \left| \frac{d}{dV_a} \right|$ dl/dV 5 (a.u.) ٢ 30 $\alpha \left| \frac{d}{dV_a} \right|$ x 5.77 100 80 20 **g/2π** $g_0/2\pi$ (kHz) (Hz) 10 20 0 n Vg (V) -1.19 -1.188 -1.186

 $\langle N \rangle (V_g)$: tunneling through Lorenz-broadened level, width Γ

$$\frac{\partial C_{\text{CNT}}}{\partial x} = e \frac{\partial^2 \langle N \rangle}{\partial V_g^2} \frac{V_g}{C_{\Sigma}} \frac{\partial C_g}{\partial x}$$
$$g_0 = \frac{\omega_{\text{cav}}}{2C_{\text{cav}}} \frac{\partial C_{\text{CNT}}}{\partial x} \Big|_{x=0} x_{\text{zpf}}$$
insert device values ...

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	000000	0000	0000	000000	00

numbers for dispersive coupling?

		carbon nanotube	graphene drum	aluminum beam
			V. Singh <i>et al.</i> (2014)	C. A. Regal <i>et al.</i> (2008)
mass	m	$5 imes 10^{-21}\mathrm{kg}$		$2 imes 10^{-15}\mathrm{kg}$
resonance frequency	<i>f</i> _{mech}	503 MHz	36 MHz	2.3 MHz
quality factor	<i>Q</i> _{mech}	10 ⁴	10 ⁵	10 ⁵
zero point fluct.	X _{zpf}	2pm	30 fm	40 fm
cavity frequency	f _{cav}	5.74 GHz	5.9 GHz	5 GHz
cavity Q	Q _{cav}	497	25000	10000
cavity occupation	n _{cav}	$6.75 imes10^4$	$(6.75 imes10^4)$	$(6.75 imes10^4)$
coupling capacitance	Cg	10aF	580 aF	
zero-photon coupling	g_0	95 Hz	0.83 Hz	0.15Hz
dispersive coupling	$g_0 Q_{ m cav}/f_{ m cav}$	$8 imes10^{-6}$	$3 imes 10^{-6}$	$3 imes 10^{-7}$
sideb. cooling rate	$\kappa_{\rm opt}(\propto n_{\rm cav})$	211 Hz	0.77 Hz	12 mHz

Suddenly this is much more interesting (even for our low n_{cav} and Q_{cav}).

S. Blien et al., Nature Comm. 11, 1636 (2020); V. Singh et al., Nat. Nano 9, 820 (2014); C. A. Regal et al., Nat. Phys. 4, 555 (2008)

TR

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	0000000	0000	000•	000000	00

outlook

- first optomechanical system with electronic quantum confinement
- improve coplanar cavity parameters, coupling, amplification
 - re-arrange attenuators, better HEMT amplifier, insert a JPA
 - simulate and optimize cavity geometry
 - improve dc cable filtering
 - ...
- $g \gtrsim \kappa_{\rm m}, \kappa_{\rm cav}$ reachable, $C \sim n_{\rm th}$ reachable \longrightarrow quantum control of motion!
- good cavity limit: cooling, heating, temperature readout, energy balance with single electron tunneling! (note that $k_B T_{\text{base}} \lesssim h f_{\text{mech}}$)
- bad cavity limit: conductance measurement with \gtrsim 100 MHz bandwidth
- quantum state transfer, mechanical quantum information processing

... and much more ...

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	000000	0000	0000	•000000	00

And now for something completely different.

introduction 000000	preparation 0000000	measurement 0000	explanation 0000	TMDC nanotubes	conclusions & thanks

And now for something completely different.

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	0000000	0000	0000	000000	00

let's go TMDC!

- first synthesis of WS₂ and MoS₂ multiwall nanotubes in 1992 by R. Tenne
- all chiralities semiconducting
- band gap decreases with radius
- intrinsic superconductivity,
 e.g., in WS₂ nanotubes via ionic gating:
 F. Qin *et al.*, Nat. Comm. 8, 14465 (2017)
 F. Qin *et al.*, Nano Letters 18, 6789 (2018)
- we get spatial confinement for free!
- no previous work on quantum dots and low temperature transport spectroscopy

TMDC nanotube growth (group M. Remškar, Ljubljana)

- two-zone furnace
- iodine-assisted chemical transport reaction M. Remškar *et al.*, APL **69**, 351 (1996)
- slow, near-equilibrium growth
- near defect-free nanostructures
- mixture of 2d and 1d morphologies
- individual multiwall tubes
- diameter from \sim 10 nm up to several μm
- length up to several millimeters

S. Reinhardt et al., pssRRL 13, 1900251 (2019)

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	000000	0000	0000	0000000	00

MoS_2 nanotube device, T = 300 K

- n-type field effect
- linear I(V) characteristics
- $R_{\rm on} \approx 15 \, {\rm M}\Omega$
- Fermi-level pinning to conduction band
- not perfect yet, but promising

pr

measure

explanation 0000 TMDC nanotubes

conclusions & thanks

stability diagram, T = 0.3 K (1)

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	000000	0000	0000	0000000	00

stability diagram, T = 0.3 K (2)

- large scale: disordered system of quantum dots
- zoom: highly regular Coulomb oscillations
- trap states at the metal contacts! capacitances confirm this

S. Reinhardt et al., pssRRL 13, 1900251 (2019)

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	000000	0000	0000	000000	00

excitation lines!

- excitation lines visible in conductance, $\Delta E \sim 500\,\mu\text{eV}$
- expected mean level spacing for a chaotic quantum dot (assuming r = 10 nm, l = 450 nm):

$$\Delta E = rac{ar{h}^2 \pi}{m^* A} \sim 10\,\mu \mathrm{eV}$$

- 1D geometry, large $N_{\rm el} \longrightarrow$ large ΔE ?
- band structure calculations and 2d magnetotransport data exist
- no theory on confinement spectrum yet
- many more measurements needed

< □ > D < C <

introduction 000000

eparation 000000 neasurement

explanation 0000 TMDC nanotubes

conclusions & thanks

ΠR

thanks

Stefan Blien

Patrick Steger

Niklas Hüttner

Richard Graaf

Thomas Huber ^{Dr.} Ondrej Vavra ^{Dr.} Andreas Pfeffer

Prof. Dieter Weiss Prof. Christoph Strunk

Prof. Eva Weig

^{Prof.} Florian Marquardt ^{Prof.} Yaroslav Blanter

Prof. Pertti Hakonen

... and many others

Simon Reinhardt Christian

Christian Bäuml

Luka Pirker

Prof. Maja Remškar

introduction	preparation	measurement	explanation	TMDC nanotubes	conclusions & thanks
000000	000000	0000	0000	000000	0.

thank you! — questions?

Microwave optomechanics: S. Blien *et al.*, Nature Comm. **11**, 1636 (2020) MoS₂ nanotubes: S. Reinhardt *et al.*, pssRRL **13**, 1900251 (2019)

↓ □ ▶ 𝒴 𝔄 𝔄

TR