Secondary electron interference from trigonal warping in clean carbon nanotubes

A. Dirnaichner et al., PRL 117, 166804 (2016)

Dr. Andreas K. Hüttel

Institute for Experimental and Applied Physics
University of Regensburg

28th International Conference on Low Temperature Physics, Göteborg
overgrown, “ultraclean” carbon nanotube device

- CNT growth *in situ* over Ti/Pt electrodes
- $V_g \lesssim 0$ → hole conduction
- no Coulomb blockade
- transparent contacts, weak scattering

A. Dirnaićner *et al.*, PRL 117, 166804 (2016)
a carbon nanotube as Fabry-Pérot interferometer

- strong coupling of nanotube and contacts, no charge quantization
- weak scattering \rightarrow Fabry-Pérot interferometer for electrons

A. Dirnaichner et al., PRL 117, 166804 (2016)
The initial observation

- Large conductance, oscillating in gate voltage V_g, bias voltage V_{sd}
- Fixed interferometer geometry; we tune the electron wave vector
- Dominant frequency corresponds to distance between contacts
our data — much larger energy range $\Delta E \simeq 0.4 \text{eV}$

- narrow oscillation (\leftrightarrow interferometer length)
- frequency doubling / beat
- slow modulation of the averaged conductance
 \[\rightarrow \text{nanotube is not just a one-channel system; valley degeneracy, dispersion relation!}\]

A. Dirnaichner et al., PRL 117, 166804 (2016)
our data — much larger energy range $\Delta E \sim 0.4\text{eV}$

- narrow oscillation (\leftrightarrow interferometer length)
- frequency doubling / beat
- slow modulation of the averaged conductance

\rightarrow nanotube is not just a one-channel system;

valley degeneracy, dispersion relation!
our data — much larger energy range $\Delta E \simeq 0.4\text{eV}$

- narrow oscillation (\leftrightarrow interferometer length)
- frequency doubling / beat
- slow modulation of the averaged conductance

\rightarrow nanotube is not just a one-channel system;

valley degeneracy, dispersion relation!

A. Dirnaichner et al., PRL 117, 166804 (2016)
impurity scattering? no!

• discrete Fourier transform of interference pattern
 (apply sliding window to $G(V_g)$, plot transform as function of window position)

• only one fundamental frequency and its harmonics
 \rightarrow no impurities that subdivide the nanotube
 \rightarrow interference effects must be due to intrinsic nanotube structure

• from decay of harmonics, extract mean path of electrons $\rightarrow \ell = 2.7\,\mu m \simeq 2.7L$

A. Dirnaichner et al., PRL 117, 166804 (2016)
structure of single wall carbon nanotubes

- typically, classification into armchair, zigzag, chiral
- chiral nanotubes can be further subdivided into armchair-like, zigzag-like

A. M. Lunde et al., PRB 71, 125408 (2005), M. Margańska et al., PRB 92, 075433 (2015)

- let’s discuss the interferometer behaviour of these four groups
- band structure & symmetry, real-space tight binding calculations

A. Dirnaichner et al., PRL 117, 166804 (2016)
interference in a zigzag nanotube

zigzag ($\theta = 0^\circ$, (n,0)):

- Dirac cones around $k_\perp = \pm K_\perp$, $k_\parallel = 0$
- angular momentum conservation \rightarrow only backscattering within cone
- two channels, identical accumulated phase \rightarrow looks like one channel

A. Dirnaichner et al., PRL 117, 166804 (2016)
interference in a zigzag-like nanotube

\[k_{\perp} = -K_{\perp} \]

\[k_{\perp} = K_{\perp} \]

zigzag-like \((0^\circ < \theta < 30^\circ, \frac{n-m}{3\gcd(n,m)} \notin \mathbb{Z})\):

- asymmetric Dirac cones around \(k_{\perp} = \pm K_{\perp}, k_{\parallel} = 0 \)
- angular momentum conservation \(\rightarrow \) only backscattering within cone
- two channels, identical accumulated phase \(\rightarrow \) looks like one channel

A. Dirnaichner et al., PRL 117, 166804 (2016)
interference in an armchair nanotube

armchair \((\theta = 30^\circ, (n,n))\):

- Dirac cones at \(k_\perp = 0, k_\parallel = \pm K_\parallel\)
- parity symmetry \(\rightarrow\) only backscattering within a / b branch
- two channels, different accumulated phase, beat; \(\bar{T}\) constant

A. Dirnaichner et al., PRL 117, 166804 (2016)
interference in an armchair-like nanotube

armchair-like \((0^\circ < \theta < 30^\circ, \frac{n-m}{3\gcd(n,m)} \in \mathbb{Z})\):

- Dirac cones at \(k_\perp = 0, \ k_\parallel = \pm K_\parallel\)
- NO parity \(\rightarrow\) two channels, different phase, mixing of channels
- beat plus slow modulation of \(\overline{T}\)

A. Dirnaichner et al., PRL 117, 166804 (2016)
meaning of the average conductance maxima

• armchair-like CNT: phase difference of Kramers modes

\[\Delta \phi^\theta(E) = |\phi_a^\theta(E) - \phi_b^\theta(E)| = 2\left(\kappa_>^\theta - \kappa_<^\theta\right)L \]

\(\kappa_>^\theta, _<\): longitudinal wave vectors measured from \(K/K'\) points

• averaged conductance has maximum when \(\Delta \phi^\theta(E) = 2\pi n\)
• relevant parameter: chiral angle \(\theta\)

\[\longrightarrow\text{ use this for chiral angle determination!}\]

• extract from data maxima positions \(V_{g}^n\) of \(G(V_{g})\)
• convert \(V_{g}^n\) from gate voltage to energy
• compare with calculated maxima positions for given \(\theta\)

A. Dirnaichner et al., PRL 117, 166804 (2016)
result for our device: $22^\circ \leq \theta < 30^\circ$

desolution of a hard problem — chirality determination from transport

A. Dirnaichner et al., PRL 117, 166804 (2016)
mainly: conversion of \bar{G} maxima positions from gate voltage to energy

- band gap at $V_g > 0$, energy offset ΔE
- lever arm $\alpha(V_g)$ hard to determine, varies strongly close to band gap
 \rightarrow $55 \text{meV} < \Delta E < 60 \text{meV}$
 \rightarrow error bars
broken rotational symmetry at contacts

- at contacts, rotational symmetry broken
 \rightarrow argument for angular momentum conservation breaks down

- integrate this into tight-binding model: differing on-site energies for top and bottom of nanotube

- result: slow oscillations of \tilde{G} also recovered for zigzag-like nanotube!

- same evaluation of the chiral angle possible!
conclusions

• complex Fabry-Pérot interference observed over a large energy range
• theoretical analysis for different nanotube types, confirmed by real-space tight binding calculations
• interference pattern is due to trigonal warping of dispersion relation and mixing of Kramers channels
• slow modulation of averaged conductance \bar{G} — robust, easily extracted
• \bar{G} depends on chiral angle θ of the nanotube

• approach towards a hard problem —
 chirality determination from low-temperature transport

A. Dirnaichner et al., PRL 117, 166804 (2016)
Thanks

Alois Dirnaichner
Miriam del Valle
Karl Götz
Felix Schupp

Nicola Paradiso
Milena Grifoni
Christoph Strunk

A. Dirnaichner et al., PRL 117, 166804 (2016)