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Subgap spectroscopy of thermally excited quasiparticles in a Nb-contacted carbon
nanotube quantum dot
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We present electronic transport measurements of a single wall carbon nanotube quantum dot coupled to Nb
superconducting contacts. For temperatures comparable to the superconducting gap, peculiar transport features
are observed inside the Coulomb blockade and superconducting energy gap regions. The observed temperature
dependence can be explained in terms of sequential tunneling processes involving thermally excited quasiparticles.
In particular, these channels give rise to two unusual conductance peaks at zero bias in the vicinity of the charge
degeneracy point and allow one to determine the degeneracy of the ground states involved in transport. The
measurements are in good agreement with model calculations.
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Introduction. Carbon nanotubes (CNTs) are highly versatile
quantum systems whose properties can be investigated by
attaching them to a wide variety of different contact materials
[1–3]. By using superconducting metals as electrodes, a
significant increase of spectroscopic resolution due to the sharp
peaks at the gap edges in the BCS density of states can be
achieved [4]. Depending on the coupling strength between
the carbon nanotube and its leads, the nanotube can act as
a Josephson weak link, and proximity-induced supercurrent
can flow through the quantum dot [3,5–7]. The supercurrent is
carried by Andreev bound states, whose presence is revealed
by peculiar subgap features [8–12]. By fabricating the contacts
from sputtered Nb, they can remain superconducting up to a
critical temperature Tc = 8.5 K and a correspondingly large
critical magnetic field Bc.

In this Rapid Communication we report on subgap features
observed in a CNT quantum dot weakly coupled to supercon-
ducting leads. Strikingly, such features are not visible at the
lowest temperatures achieved in the experiment but only when
the temperature becomes comparable to the superconducting
gap. This suggests that, as explained below, the observed
subgap features are not due to Andreev reflections but rather to
thermal excitation of quasiparticles across the gap, as predicted
recently by some of us [13]. We perform a systematic analysis
of the temperature dependence of the observed features. A
good agreement between experimental data and theoretical
predictions in the linear as well as in the nonlinear regime is
obtained.

Experimental details. The measurements presented here
were performed on a single wall carbon nanotube grown by
chemical vapor deposition (CVD) [14]. As the substrate highly
p-doped Si capped with 300 nm SiOx is used. The electrodes
to the nanotube are composed of 3 nm Pd as the contact layer
and 45 nm sputtered Nb with a contact spacing of the order of
300 nm. The room temperature resistance of our device is in
the range of 100 k�.

For performing two- and four-point measurements, each
superconducting electrode is connected to two AuPd leads as
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resistive on-chip elements that are, among other filter stages,
supposed to damp oscillations at the plasma frequency of the
Josephson junction [7,15]. A scanning electron micrograph
of the sample is shown in Fig. 1(a). The device was mea-
sured in a dilution refrigerator with a base temperature of
25 mK.

Transport spectroscopy. Figure 1(b) shows an overview
plot of the differential conductance dI/dVsd as a function of
source-drain voltage Vsd and gate voltage Vgate at T = 25 mK.
This temperature is much smaller than the critical temperature
Tc expected for our Nb contacts. The measurement of Fig. 1(b)
serves as a reference for the high temperature experiments
and theoretical predictions discussed below. Besides regular
Coulomb diamonds, a rich substructure of both elastic and
inelastic cotunneling lines is observed [4,16,17], reflecting the
high spectroscopic resolution brought about by the sharp peaks
in the BCS density of states [cf. Fig. 1(c)].

The superconducting energy gap estimated from the se-
quential tunneling features at Vsd = ±2�/e (see details below)
is � ∼ 320 μeV, compared to an expected value of � =
1.5 meV for bulk Nb [18]. This reduction of the gap has
been reported before in similar Nb-based devices [4,12]. Its
origin so far remains an open question, though contamination
of the lower Nb interface, the formation of niobium oxide
[19], or the thin Pd contact layer may play a role [4]. Estimated
from � = 320 μeV, the resulting effective critical temperature
would be Tc ∼ 2.1 K. However, features in the data attributable
to superconductivity remain present up to temperatures of
about 3–5 K, and measurements of a codeposited Nb strip
of comparable dimensions on the same chip yielded a critical
temperature of Tc = 8.5 K.

From additional stability diagrams similar to Fig. 1(b)
but taken at higher temperatures and finite magnetic field
to suppress superconductivity (not shown), we estimate a
charging energy U ∼ 15 meV. From the fitting between
experiments and theory discussed below [cf. in particular
Eq. (4)], a coupling strength between the quantum dot and
leads of � ∼ 0.093 meV is extracted. This places our measure-
ment into the parameter range � < � � U , where Coulomb
repulsion dominates transport, superconductivity enhances the
spectroscopic resolution [20], and Andreev reflections are
expected to be strongly suppressed [21]. No obvious traces
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FIG. 1. (Color online) (a) Scanning electron micrograph of the
measured device displaying the resistive AuPd leads (bright) and the
Nb electrodes (faint). The location of the nanotube is indicated by
the black curve. (b) Differential conductance dI (Vsd,Vgate)/dVsd as
a function of source-drain voltage Vsd and gate voltage Vgate at T =
25 mK. Dark areas correspond to negative differential conductance.
The black rectangle outlines the parameter region of Fig. 2.
(c) Scheme explaining the thermal excitation of quasiparticles across
the superconducting gap (see text).

of Kondo phenomena [22] are observed either in the normal
or in the superconducting state.

Thermally activated transport. For quantum dots con-
nected to superconducting leads, transport is usually blocked
in the energy gap range |eVsd| � 2�. At high temperature,
transport becomes possible both at low bias and in parts of
the Coulomb blockade region due to quasiparticles excited
across the superconducting energy gap [13]. This is illustrated
in Fig. 1(c), showing the product (black solid line) of the
quasiparticle density of states (blue dashed-dotted line) and
the Fermi function (red dotted line). For sufficiently high
temperature, corresponding to a thermal broadening of the
Fermi function of the order of the gap, a small peak at E ≈ �

emerges. This peak vanishes at low temperature when the
broadening of the Fermi function is much smaller than the
gap. The focus of this work is the systematic investigation
of features due to this extra thermal channel, both from a
theoretical and experimental point of view. In the following
we distinguish between standard resonance lines, which are
also present at low temperatures, and thermal lines due to the
presence of the extra thermal peak.

Figures 2(a)–2(c) display detailed measurements of the
differential conductance at increasing temperatures, close to
the charge degeneracy point marked by the black rectangle in
Fig. 1(b) [23]. The comparison of Figs. 2(a)–2(c) gives direct
evidence that at temperatures above T � 300 mK additional
transition lines parallel to the sequential tunneling lines emerge
within the region of Coulomb blockade [see, e.g., the green
arrow in Figs. 2(b)–2(d)]. These lines are separated from
the sequential tunneling lines by a characteristic region of
negative differential conductance (NDC, dark). As can be seen
in Fig. 2(d), the additional lines and the NDC regions are

(a) (b)

(c) (d)

FIG. 2. (Color online) Differential conductance dI (Vsd,Vgate)/
dVsd as a function of source-drain voltage Vsd and gate voltage
Vgate measured at (a) T = 0.3 K, (b) T = 1.2 K, (c) T = 2.0 K,
and (d) corresponding transport calculation at T = 1.2 K. One of
the additional lines emerging at high temperature is marked by a
diagonal green arrow. Around zero bias two conductance peaks are
clearly visible (vertical blue arrows). The dotted rectangles in (a)
and (d) as well as the horizontal lines in (a) frame regions used to
extract the line plots in Figs. 4(a) and 4(c). The maximum of the
dI/dVsd scale was set to 0.031 × 2e2/h to increase the contrast of
the thermally induced lines.

reproduced by our transport calculations described in detail
below, which account for sequential tunneling processes of
thermally excited quasiparticles. At the intersection of such
lines we obtain two zero-bias conductance peaks indicated by
blue arrows and separated by δVg = 2|�|/eαg, with αg as the
gate coupling factor.

Theoretical model. Our calculations are based on a master
equation approach for the reduced density matrix (RDM) to
lowest order in the tunneling to the leads, including only
quasiparticle tunneling [13]. The theory is generalized here
to include also the shell and orbital degrees of freedom of
the CNT. Specifically, the quantum dot is modeled by the
Hamiltonian

ĤCNT =
∑
ασ

εασ d̂†
ασ d̂ασ + U

2
N̂ (N̂ − 1), (1)

where α = (s,τ ) is a collective quantum number accounting
for longitudinal (s) and orbital (τ ) degrees of freedom, respec-
tively, and σ labels the spin [24]. Finally, we employ a constant
interaction model for the Coulomb repulsion on the tube with
strength U . Including two longitudinal modes, s = 1,2, and
accounting for the two orbital degrees of freedom, τ ∈ {a,b},
of the CNTs, εασ represents four energy levels with energies ε0,
ε0 + δ, ε0 + �ε, and ε0 + �ε + δ. The characteristic fourfold
degeneracy of the carbon nanotube spectrum is assumed to
be lifted by δ =

√
�2

SO + �2
KK ′ originating from spin orbit

splitting �SO and valley mixing �KK ′ [25].
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FIG. 3. (Color online) (a) Expected position of the differential
conductance lines of the stability diagram in Fig. 2(d). The solid
blue (dark gray) lines correspond to standard transitions between
the (4n + 3)- and (4n + 4)-electron ground states, denoted (3g) and
(4g), respectively. The solid orange (light gray) lines are caused
by thermally activated transport channels. Lines from standard
transitions involving an excited state are depicted as broken blue
lines, and the associated thermal replica in orange with the same line
style. (b) Legend associating transition lines to transitions between
states. We denoted the first, second, and third excited state of electron
number N by (N ′), (N ′′), and (N ′′′), respectively. (c) Many-body
spectrum of the (2n + 3) and (2n + 4) electron subspace as observed
in transport, for αgeVg = |�|. Here the three-particle ground state
energy is E3g − 3μ0 = −2δ − 6U + 3|�|. The distances between
the energy levels �E [cf. Eqs. (2) and (3)], marked by arrows,
are used to extract �ε and δ from the measurements. Transitions
involving the levels marked light gray are not experimentally
observed.

The size of the experimentally measured Coulomb dia-
monds and the positions of the excited state lines in the stability
diagrams are consistent with the assumption that the transitions
occur between states with (4n + 3) and (4n + 4) electrons.
They are correctly reproduced in our model with δ = 1.3 meV,
a spacing between the longitudinal modes �ε = 1.55δ, and
U = 15 meV. The gate voltage is assumed to linearly shift
the single particle energy levels εασ → εασ + αgeVg . At finite
bias voltage the electrochemical potentials in the source and
drain electrodes are μS/D = μ0 ± αS/DeVb, where αS = αsd

and αD = 1 − αsd account for the asymmetric bias drop at the
source and drain contact, respectively. From our simulations,
we find an effective back gate coupling αg = 0.1 and an
asymmetric bias drop αsd = 0.4.

The expected positions of the differential conductance lines
of the stability diagrams are displayed in Fig. 3(a). The solid
blue lines show the (4n + 3) electron ground state to (4n + 4)
electron ground state transition (3g)-(4g), and the broken blue
lines are instead transition lines between a ground state and an
excited state of the neighboring particle number [see Fig. 3(b)].
Each of the possible standard transition lines is accompanied
by an associated thermal line (in orange, same line style) due to
thermally activated quasiparticles. We set the zero of the gate
voltage at the charge degeneracy point. The position of the
blue transition lines is then dictated by the standard sequential

FIG. 4. (Color online) (a) Gate voltage dependence of the low
bias conductance at different temperatures. Each trace is an average
over the bias voltage region marked in Fig. 2(a). (b) Temperature
dependence of the conductance maxima A (squares) and B (triangles)
in (a), together with a model calculation according to Eq. (4) (lines).
(c) Bias traces of the differential conductance, taken within the
rectangular area in Fig. 2(a), for different temperatures (see text). Two
peaks due to standard (s.p.) and thermal (th.p.) processes are observed.
(d) Temperature dependence of the maximum of the differential
conductance peaks of (c). The solid and the dashed-dotted lines
result from corresponding model calculations using a corresponding
average. Our second-order theory is overestimating the peak height
of the standard peak. Hence the curve was multiplied by 0.28 for a
better qualitative comparison.

tunneling requirements [13],

eVsd = 1

αS/D
(±αgeVg + �E + |�|), (2)

for source lines (+) and drain (−) lines. Here, �E is the energy
difference between an excited state and a ground state with the
same particle number in the many-body spectrum of Fig. 3(c).
In the case of a source (drain) transition �E is calculated in
the N (N + 1) particle subspace. For a ground state to ground
state transition, �E = 0 in Eq. (2).

The conditions for the occurrence of an orange thermal line
are

eVsd = 1

αS/D
(±αgeVg + �E − |�|). (3)

Thus, each replica runs parallel to the diamond edge at
a distance 2|�|/αS/D from the standard line associated
to it.

Low bias conductance. Figure 4(a) shows the gate voltage
dependence of the low bias differential conductance for
increasing temperature. Each trace is an average of several
measurements taken at small but finite bias values symmet-
rically located around Vsd = 0 and corresponding to the area
between the dashed horizontal lines in Fig. 2(a). Note that
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due to the existence of a superconducting energy gap, no
current would be expected in this bias voltage range. Two
clearly distinguishable peaks are observed. They result from
the zero-bias crossing of the thermally induced transition lines.
Due to their thermal nature, they decrease for decreasing
temperature. At T = 0.3 K the double peak is absent. A single
peak observed at approximately the position of the charge
degeneracy point may be due to higher-order processes not
captured by the theory discussed below.

In Fig. 4(b) the maximal conductance measured at the two
peaks denoted by A and B in Fig. 4(a) is plotted as a function
of the temperature (squares and triangles, respectively). The
observed behavior is well reproduced by an analytic expression
for the linear conductance derived around the N to (N + 1)
charge degeneracy point (solid lines). By taking into account
the ground state energy levels of the relevant N and (N + 1)-
particle subspace, we find

dI

dVsd

∣∣∣∣
Vsd=0

= e2

2

�

kBT
Re

[
cosh

(
�Eg + iγ

2kBT

)]−2

×D(�Eg)(ρN + ρN+1), (4)

with the BCS density of states D(E), and the occupation
probability of the N -particle ground state ρN . The energy
difference �Eg between the two ground states scales linearly
with Vgate and equals zero at the charge degeneracy point.
Here, γ is a phenomenological Dynes parameter [26] related
to a finite lifetime of the quasiparticles in the superconducting
leads. The Dynes parameter is introduced to renormalize the
BCS density of states and therefore leads to a broadening of
the conductance peaks. Equation (4) predicts the existence
of two maxima of the conductance located symmetrically
around �Eg = 0. The values of the maxima as a func-
tion of the temperature correspond to the two solid lines
in Fig. 4(b).

We notice a good agreement between experiment and
theory at temperatures above T ∼ 1 K. From the fit we
extract the coupling parameter � = 0.093 meV and the Dynes
parameter γ = 0.015 meV. The temperature dependence of
the conductance peaks can be divided into two regimes. At
low temperature, i.e., in the thermal activation regime, the
“cosh−2” term of Eq. (4) dominates, leading to a steep increase
of the peaks with temperature. In the high temperature regime,
we see the typical 1/T decay known from standard sequential
tunneling processes [27].

Of particular interest is the ratio of the conductance maxima
of the left and the right peak. Since Eq. (4) is symmetric around
�Eg = 0, we find that the ratio is equal to

dI/dV A
sd

dI/dV B
sd

= (ρN + ρN+1)A
(ρN + ρN+1)B

= dN+1 + dN e−�Eg/kBT

dN + dN+1 e−�Eg/kBT
, (5)

where canonical expressions were used for the occupation
probabilities ρN and ρN+1, and dN (dN+1) denotes the
degeneracy of the N and (N + 1) particle ground states.
Thus, it is possible to directly probe the degeneracy of the
two ground states using Eq. (5). Figures 4(a) and 4(b) show
that the conductance at point (B) is larger than at point (A),
leading to the conclusion that the N -particle ground state has a
larger degeneracy than the (N + 1)-particle ground state. This

confirms the assumption that the data are measured around
a (4n + 3)-(4n + 4) type charge degeneracy point, as also
supported by the excited state transition lines (see Fig. 2). The
modeling in Fig. 4(b) uses the corresponding values d3 = 2
[for (4n + 3)] and d4 = 1 [for (4n + 4)].

According to our model, the fourfold degeneracy of the
CNT is broken and the degeneracy of a ground state with
an odd number of particles, due to time reversal symmetry,
equals d2N+1 = 2. Taking the ratio of the measured peak height
of the two thermally induced conductance peaks provides a
method to determine the degeneracy of the ground state of
multielectron quantum dots.

Finite bias conductance. The behavior of thermal and
standard transitions at finite bias is depicted in Fig. 4(c),
which shows dI/dVsd(Vsd) traces at various temperatures.
These traces result from an average taken over the voltage
range marked by the dotted box in Fig. 2(a) [28]. We observe
two peaks which evolve in opposite ways at increasing
temperature: The standard peak (s.p.) at higher Vsd decreases
as expected from standard sequential tunneling [27]. The
second one at lower Vsd increases and hence confirms ther-
mally assisted quasiparticle tunneling (thermal peak, th.p.). A
characteristic dip evolving into NDC is also clearly observed
in the line traces in Fig. 4(c).

In Fig. 4(d) the extracted temperature dependence of both
the thermally activated and the standard sequential tunneling
peak is depicted (triangles). Similar to the data analysis of the
experiments, also the theoretical curves for the peak height
were calculated via averaging over the voltage range marked
with the dotted rectangle in Fig. 2(d). Our perturbative theory
is overestimating the height of the standard peak. Hence,
the theoretical curve (dashed-dotted line) was multiplied by
0.28 to allow a better comparison with experimental data. A
decrease of the peak is observed with increasing temperature.
The calculation for the thermally activated peak (solid black
line) is in good agreement with experiments; it shows a
similar temperature dependence as the conductance peaks
in Fig. 4(b).

Preliminary calculations show that a renormalization of
the lowest-order theory taking into account also charge
fluctuations in the framework of a dressed second-order theory
[29] can reproduce the broadening (linewidth) of the resonance
peaks and gives the correct ratio between the peak height of the
thermally induced and the standard sequential tunneling peak.
This study will be the subject of an upcoming publication.

Conclusions. We demonstrate thermally activated quasi-
particle transport in a carbon nanotube quantum dot with
superconducting contacts. Our theoretical analysis shows that
the additional lines in the otherwise blockaded regions of the
stability diagram appear already in the sequential tunneling
regime. The splitting of the thermally induced conductance
peaks at low bias can be used to probe the degeneracy
of the ground states, and provides a particularly useful
method to determine charge configurations from transport
characteristics.
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Lindelof, Phys. Rev. B 79, 134518 (2009).

[5] J.-P. Cleuziou, W. Wernsdorfer, V. Bouchiat, T. Ondarcuhu, and
M. Monthioux, Nat. Nanotechnol. 1, 53 (2006).

[6] P. Jarillo-Herrero, J. A. van Dam, and L. P. Kouwenhoven,
Nature (London) 439, 953 (2006).

[7] E. Pallecchi, M. Gaass, D. A. Ryndyk, and C. Strunk, Appl.
Phys. Lett. 93, 072501 (2008).

[8] T. Dirks, T. L. Hughes, S. Lal, B. Uchoa, Y.-F. Chen, C. Chialvo,
P. M. Goldbart, and N. Mason, Nat. Phys. 7, 386 (2011).

[9] J.-D. Pillet, C. H. L. Quay, P. Morfin, C. Bena, A. L. Yeyati, and
P. Joyez, Nat. Phys. 6, 965 (2010).

[10] B.-K. Kim, Y.-H. Ahn, J.-J. Kim, M.-S. Choi, M.-H. Bae,
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[11] J.-D. Pillet, P. Joyez, R. Žitko, and M. F. Goffman, Phys. Rev. B
88, 045101 (2013).

[12] A. Kumar, M. Gaim, D. Steininger, A. Levy Yeyati, A. Martı́n-
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