
T h e  o p e n – a c c e s s  j o u r n a l  f o r  p h y s i c s

New Journal of Physics

Nanoelectromechanics of suspended
carbon nanotubes

A K Hüttel1, M Poot, B Witkamp and H S J van der Zant
Molecular Electronics and Devices, Kavli Institute of Nanoscience,
Delft University of Technology, PO Box 5046, 2600 GA Delft, The Netherlands
E-mail: a.k.huettel@tudelft.nl

New Journal of Physics 10 (2008) 095003 (13pp)
Received 14 March 2008
Published 30 September 2008
Online at http://www.njp.org/
doi:10.1088/1367-2630/10/9/095003

Abstract. We discuss different types of measurements targetting the interplay
of mechanical motion with electrical transport in suspended single-wall carbon
nanotube devices. In driven resonator experiments, the transversal acoustical
vibration mode is detected and identified at room temperature using ac
down-mixing techniques. In contrast, low-temperature transport spectroscopy
enables the observation of the longitudinal acoustic mode in the quantum
limit in single electron tunnelling. This vibrational excitation can also be
observed in higher order tunnelling current for appropriate electronic coupling
to the leads. Experimental roads towards the quantum limit of the transversal
vibration mode—as ultimate quantum-limited beam resonator—are explored,
e.g. extending both abovementioned measurement techniques.
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1. Introduction and overview

Research towards observing the quantum limit of mechanical motion has led to a multitude
of experimental results in many material systems during recent years [1]–[3]. A promising
system for observing the transition between classical mechanics and quantized, nonclassical
behaviour is given by single-wall carbon nanotubes (SW-CNTs). SW-CNTs display both
extraordinary mechanical and electronic properties. During recent years, research on these
macromolecules has covered many areas. This ranges from materials science and industrial
applications, focusing mainly on the high tensile strength and Young’s modulus [4], to basic
research on the nanoelectromechanics of individual nanotubes. Here, they represent the ultimate
limit of a mechanical beam resonator, which can be successfully modelled by classical means for
suspended nanotubes in the micrometre range [5]. Its exceptionally low mass ∼10−21 kg µm−1

leads to an oscillator zero-point motion of the transversal mode of over 1 pm, such that direct
detection with position-sensing schemes seems feasible. In addition, the entire acoustic and
optic phonon spectra [6, 7] predicted for the carbon lattice become relevant, which show a rich
variety of modes and cover a wide frequency range. With different measurement techniques,
many of these vibrational modes can be resolved.

Figures 1(a) and (b) display a schematic side view and an electron micrograph of a typical
nanoelectromechanical SW-CNT device. In a three-terminal arrangement, a suspended single
nanotube is clamped between two metallic contact electrodes and suspended above a substrate
back-gate. Different measurements on such devices will be discussed further on in this paper.
Figure 1(c) sketches the relevant vibrational modes, while figure 1(d) gives an overview of the
corresponding energy scales and their dependence on the length L of the suspended nanotube
piece.

The radial breathing modes (RBMs) of SW-CNTs, corresponding to optical phonon
branches, have found wide attention in optical spectroscopy [6]. Here, e.g. the identification
of individual nanotube chirality and tracing of chirality changes at defects has been possible
by means of Raman spectroscopy [8]. In addition, the RBMs have been probed in electronic
transport by contacting the nanotube with a scanning tunnelling microscope tip [9]. Longitudinal
acoustic excitations of SW-CNTs, corresponding to the stretching mode of a bulk beam, can be
observed in an energy range around ∼1 meV by low-temperature transport spectroscopy [7].
For both types of vibrational excitations, it is obvious that a quantum mechanical treatment is
required, as the quantized nature of the mechanical excitations dominates the behaviour in the
measurement.

The transversal acoustic vibration modes of a suspended nanotube, similar to the motion
of a guitar or piano string, have a considerably lower energy [5, 6]. Even here, though,
the extremely high tensile strength of SW-CNTs with a Young’s modulus of typically E '

1 TPa [4], combined with the large aspect ratio of nanotube devices, enables the use as
radio-frequency mechanical resonators [10]–[12]. Several methods have been utilized for
demonstrating lateral mechanical motion of nanotube systems. Approaches to directly observe
the motion include real-time visualization as blurring in transmission electron microscopy
(TEM) [12, 13] and tracing of the vibration envelope with an atomic force microscope tip [14].
In addition, electronic transport detection of mechanical resonance is possible via signal down-
mixing [10, 11], which can also enable the direct identification of the fundamental mode [5, 11].

In the following, we will present the current state of characterizing the transversal acoustic
vibrations of suspended SW-CNTs, in analogy to conventional NEMS and MEMS beam
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Figure 1. (a) Side-view sketch of the geometry of a typical three-terminal
nanoelectromechanical suspended single carbon nanotube device. The nanotube
stretches freely between metallic contact electrodes. (b) Corresponding scanning
electron micrograph. (c) Schematic drawing of the vibrational modes and
(d) predicted corresponding oscillator energy scales h̄ω of suspended nanotube
segments, taking into account the characteristic material properties of SW-CNTs.
The radial breathing mode (RBM) scales with 1/d (d being the nanotube
diameter), and the transversal ‘bending’ mode is both diameter and tension
dependent. Thus, both are characterized by a frequency range (indicated in
the figure by a widening of the green and blue lines). Data points indicate
observations of harmonic excitation spectra, i.e. quantized vibration modes, in
low-energy transport spectroscopy experiments (see section 3).

resonators, in driven oscillator experiments. The longitudinal acoustic vibrations, in contrast,
are shown to be visible in the quantum limit in both first-order and higher order tunnelling in
low-temperature transport spectroscopy. Finally, we discuss possible ways of approaching the
quantum limit for the transversal vibration as well.

2. Electrostatically driven nanotube resonators

In the field of nanomechanics, suspended carbon nanotube resonators form the ultimate size
limit of a mechanical beam resonator [10, 11, 14, 15]. Due to the relatively large resistance of
nanotubes of at least several kiloohms, magnetomotive driving and detection of the mechanical
resonator cannot be used. Thus, in room-temperature experiments, frequency mixing techniques
are employed for down-mixing the ac conductance and detecting mechanical capacitance
changes. The nanotube resonator is driven electrostatically by applying both ac and dc voltages,
V ac

g and V dc
g , respectively, to an underlying back-gate electrode formed by the wafer substrate

(as sketched in figure 1(a)). The interaction capacitance between resonator and back-gate
electrode can be written as the sum of a static, time-independent term Cdc

g corresponding to the
time-averaged position of the nanotube, and a contribution Cac

g (t) oscillating at the frequency of
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Figure 2. (a) Schematic overview of the measurement setup used for detecting
vibrational resonances of suspended carbon nanotubes via frequency down-
mixing [11]. While the nanotube resonator is driven at frequency ω, a
source–drain bias at ω ± δω is applied; the gate-dependence of the nanotube
conductance enables effective read-out of the mechanical response at the dif-
ference frequency δω. (b) Measured current at frequency δω in a L = 1 µm
nanotube device, displaying several gate-voltage-dependent mechanical reso-
nance features. To emphasize the mechanical resonances, a high pass filter was
used for removing the slow varying electrical background signal. Due to slack in
the nanotube, multiple vibration modes are visible.

the mechanical motion, i.e.

Cg(t) = Cdc
g + Cac

g (t). (1)

When the ac driving voltage frequency nears the frequency of one of the mechanical
eigenmodes, the oscillatory nanotube displacement increases thereby modulating the distance
between the back-gate and the nanotube. This leads to an increase in the value of Cac

g (t)
superimposed on the static capacitance Cdc

g between the nanotube and the back-gate. For
semiconducting nanotubes at room temperature, it is well known that the conductance of the
nanotubes depends on the charge induced on the tube. The ac displacement of the resonator
near a mechanical resonance hence also induces charge Qac(t) = Cac

g (t)Vg and thus changes the
conductance through the ac capacitance:

Gac
=

dG

dVg

(
V ac

g + V dc
g

Cac
g

Cdc
g

)
, (2)

where the factor dG
dVg

denotes the transconductance of the device. This transconductance typically
depends on the dc gate-voltage for semiconducting nanotubes, and is in our devices of the order
1–10 µS V−1. By applying an ac source–drain bias V ac

sd with a small frequency offset δω, the ac
conductance is mixed with the ac bias voltage, resulting in a low-frequency current Ī ∝ V ac

sd Gac,
which is modulated at the difference frequency and can be extracted by means of a lock-in
amplifier [10, 11]. The setup of this measurement is sketched in figure 2(a).

Unlike common top-down NEMS resonators, due to the small cross-sectional areas of SW-
CNTs, tension plays an important role for the transversal vibration mode. Calculations show
that tension can be used as an instrument for tuning the mechanical resonance frequencies [16].
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This has been confirmed by experiments [10, 11], which show that the mechanical resonance
frequencies are easily increased up to 200% of their zero-tension value. Sazonova et al [10] have
observed multiple gate-tunable resonances at specific driving frequencies in the down-mixed
current flowing through the nanotube when the dc gate-voltage (and through it the tension)
was increased. These multiple resonances can be attributed to several in-plane and out-of-plane
flexural modes of a slack suspended nanotube (hanging chain) [17]. Here, the nanotube itself
is longer than the distance between its clamping points. Witkamp et al [11] measured a single
gate-tunable resonance in several devices and identified it as the fundamental bending mode
vibration of a nanotube that is under small compressive tension, but not buckled. A common
feature in these devices (both for slack tubes and for nanotubes under tension) is that the quality
factors of the mechanical resonances are at room temperature rather low, i.e. on the order of a
few hundred.

Higher mechanical eigenfrequencies can be reached by either using shorter nanotube
resonators—which increases the fundamental bending mode frequencies—or by using tension
to increase the mechanical resonance frequencies to a much higher value. Both methods
decrease, however, the amplitude of the resonator, and thereby the detected ac current signal [5].
Currently, the high frequency limit of the described measurement technique is given by
a few hundred MHz, corresponding to a vibrational quantum energy of h̄ω ∼ 1 µeV. At
these frequencies, the mechanical resonance peaks are hard to distinguish from background
fluctuations of the conductance and therefore become increasingly more difficult to observe.
Note that in our setup the mentioned background fluctuations do not form the intrinsic limitation
of detection sensitivity. This limit is given by the thermal fluctuations of the nanotube position.
The origin of the background fluctuations is not understood; one possibility may be the motion
of charges in the oxide layer.

3. Quantized mechanical motion of the longitudinal acoustic mode

When suspended nanotube devices, as discussed in the previous section, are cooled down to
cryogenic temperatures, tunnel barriers between the metallic leads and the nanotube may lead
to the formation of a quantum dot within the nanotube [21, 22]. The gate dependence of the
conductance can display different behaviour, depending on the coupling between the nanotube
and the leads. For large couplings 0, Fabry–Perot behaviour with a slowly varying conductance
is expected [23], whereas for small 0, Coulomb blockade (CB) is observed [21, 22, 24, 25]. In
the latter case, the conductance consists of a series of sharp peaks with a width depending on 0

and the electron temperature. Figure 3(a) shows a sketch of such a suspended nanotube quantum
dot, with the highly doped wafer substrate acting as back-gate electrode. Since suspending the
device is done by isotropic etching with buffered hydrofluoric acid, the contact electrodes are
also partially underetched.

In the parameter regime dominated by CB physics, the quantum mechanical level spectrum
of the confined electronic system can be characterized by transport measurements [18].
By recording in the so-called stability diagram—as drawn in figure 3(b)—the differential
conductance dI/dVsd as a function of gate voltage Vg and source–drain voltage Vsd, both
semiconducting and metallic nanotubes have been characterized in literature, leading to striking
agreements between the theory and observations [26]–[28]. An important property of suspended
nanotube systems is that in the quantum limit of the mechanical mode, i.e. for h̄ω > kBT , due to
the Franck–Condon effect mechanical modes also become visible in transport [7, 20]. In short,
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Figure 3. (a) Schematic drawing of a suspended carbon nanotube as a single
electron tunnelling (SET) device. Due to the choice of chromium/gold contacts,
tunnel barriers defining a quantum dot are formed at the nanotube–contact
electrode interface. (b) Basic principles of transport spectroscopy [18].
Differential conductance dI/dVsd is measured as a function of gate voltage
Vg and source–drain voltage Vsd, resulting in the characteristic pattern of
diamond-shaped regions of CB. In the regions of SET, changes in tunnel rates
occur whenever an additional transport channel becomes energetically possible.
Higher order processes may lead to structures within the CB regions [19].
(c) Example measurement of the differential conductance dI/dVsd of a
suspended SW-CNT quantum dot, displaying a large number of excitations in
the low-energy spectrum (see text). Figures (d) and (e) display traces I (Vsd)

and dI/dVsd(Vsd), respectively, from (c) at Vg = 3292 mV. The x-axis has been
rescaled to reflect the excitation energies that the differential conductance
maxima correspond to (see text). The blue line represents the calculated zero-
temperature current steps of a Franck–Condon model with strong relaxation and
electron–phonon coupling g = 1.26 [20].

electrostatic coupling between the gate electrode and the suspended nanomechanical system
leads to a dependence of the position of the mechanical oscillator ground state on the number of
trapped charges. The vibrational wavefunction overlap of the N and N + 1 charge carrier states
required for SET is thus reduced by the so-called Franck–Condon factors. At finite source–drain
voltage Vsd, whenever an additional vibrational quantum is encompassed by the energy window,
this reduction is partially lifted, leading to steps in tunnel current equidistant in Vsd. The
entire nanotube acts as a quantized single nanomechanical oscillator. The coupling strength
between the electronic and the mechanical systems can be characterized by a dimensionless
parameter g =

1
2(x/x0)

2, where x is the shift of the ground-state position induced by adding
one elementary charge, and x0 describes the zero-point motion of the mechanical oscillator. In
the simplest case, the Franck–Condon model assumes fast relaxation of the mechanical system
to its ground state (compared with the electronic tunnel rates), but different scenarios may be
envisaged [29].

New Journal of Physics 10 (2008) 095003 (http://www.njp.org/)

http://www.njp.org/


7

The energy resolution of transport spectroscopy measurements is limited by several
factors, including the electron temperature, the natural linewidth of the involved quantum
states, and fluctuations of the electrode potentials. To date, a typical SW-CNT device has
a length of 100 nm6 L 6 1 µm, which excludes the bending mode from direct observation
(see figure 1(d)). Data on harmonic excitation spectra observed in transport, however, support
a considerable electron–vibration coupling of g ∼ 1 for the longitudinal acoustic vibration
mode [7]. The data points in figure 1(d) provide an overview of the energy scale determined
from harmonic spectra observed so far, extending the results of [7] with new measurements.

Figure 3(c) displays an example transport spectrum of a 160 nm long suspended carbon
nanotube. The data have been recorded at an electron temperature of Tel ' 100 mK and a
cryostat temperature of T ' 20 mK in a 3He/4He dilution refrigerator. For this device length,
a stretching mode energy of h̄ω = 0.7 meV is predicted. In the plot of figure 3(c), a dominant
energy scale of 0.6 meV is observed, in reasonable agreement with this prediction. Figure 3(d)
and (e) display data traces of current and differential conductance, respectively, for the constant
Vg = 3292 mV. From the slopes of the edges of the CB region in the stability diagram of
figure 3(c), one can obtain the capacitance ratios between gate, source and drain electrodes
and the quantum dot, and thereby the conversion factors relating the applied voltages to the
local electrostatic potential. This has been used for re-scaling the x-axis to reflect the excitation
energies that the current steps correspond to. Assuming fast vibrational relaxation, from the
first two current steps in figure 3(d), a value of g ' 1.3 can be estimated [20]. The blue line in
figure 3(d) indicates the current step heights predicted by such a Franck–Condon model. This
result, similar to previous measurements [7], suggests strong electron–vibron interaction.

In detail, however, the spectrum of figures 3(c)–(e) is not given by equidistant excitations,
but by pairs of excitations—a fundamental line is accompanied by a parallel excitation at
∼0.6 meV higher energy. The second one of these line pairs displays a considerable gate voltage
or bias dependence of excitation energy. Similar ‘dressing’ of excitations by vibrational modes
has been described by extensions of the Franck–Condon model, taking into account additional
electronic degrees of freedom or modification of the vibration frequency at a change of the
number of trapped charge carriers [30, 31].

Figure 4(a) displays the transport spectrum of the same device as in figure 3(c) for more
negative gate voltage Vg. Here, while CB still dominates transport, a considerably stronger
coupling between the quantum dot and leads is observed. Such a change of electronic coupling
with gate voltage Vg is commonly observed in carbon nanotubes. The higher coupling leads to
larger currents, peak broadening and higher order tunnelling processes in the CB region [19].
A striking feature of the data is a multitude of strongly gate-dependent inelastic co-tunnelling
resonances. For comparison, the scale 1E = 0.6 mV obtained in figure 3(c) has been indicated.
It nearly coincides in many places with the energetic distance of the co-tunnel resonances; a
direct read-out of the bias distance between the adjacent lines here results in a slightly higher
value. The co-tunnel resonances persist upto a temperature of over 0.5 K, as can be seen from
the traces dI/dVsd(Vsd) shown in figure 4(b). Note that the co-tunnel features appear as peaks
instead of steps. This may hint at non-equilibrium effects or Kondo interactions.

Although mechanisms for gate-dependent co-tunnel resonances have very recently been
proposed and identified in literature for SW-CNT quantum dots [32], explaining the gate
dependence of inelastic co-tunnelling as observed here has not been possible so far. The
same is true for the ‘dressing’ effect observed in figures 3(c)–(e). The obvious recurrence of
the characteristic energy scale of the longitudinal acoustic vibration mode strongly suggests
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Figure 4. (a) Differential conductance of the same device also shown in
figure 3(c), but for a different gate voltage region displaying a larger dot–leads
coupling. While CB still dominates transport, a large number of strongly gate-
dependent inelastic co-tunnelling resonances is observed, with a characteristic
energy scale close to the 0.6 meV in figure 3(c). (b) Temperature dependence of
one exemplary co-tunnel step, taken at Vg = −2.84 V as indicated by a yellow
dotted line in (a).

a common mechanical effect in both cases. Mechanisms of interaction between, e.g., co-
tunnelling or the Kondo effect and vibrational modes remain an area of active theoretical
research to date.

4. Outlook—Bending-mode spectroscopy and the quantum limit

The transition towards quantized mechanical motion for the transversal vibration mode may
provide a nanoelectromechanical system that can exist as both conventional mechanical beam
resonator and quantized oscillator, one of the main goals of NEMS research. Fundamentally
different ways towards observing quantum mechanical effects related to the transversal or
bending vibration mode are possible. We will briefly comment on three such approaches.

4.1. Driven-motion detection and Coulomb blockade

As a first step, one may consider extending the beam resonator detection scheme of section 2
to the low-temperature limit. However, as explained in section 3, different situations can occur
when cooling a nanotube to cryogenic temperatures. When the coupling to the leads is large
enough, the conductance varies only slowly with gate voltage and the mixing technique can
be used for detecting the motion of the nanotube. However, at small coupling 0, CB occurs,
and a series of discrete peaks is visible in the gate-dependence of the conductance. Due to the
sharpness of these peaks (�V ac

g ), the usual derivation of the mixing current breaks down, and
one may ask whether it is possible to measure the driven vibrations of the nanotube at all with
the frequency down-mixing technique.
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Figure 5. (a) Schematic of the effect of ac gate and bias voltages in the
stability diagram of a quantum dot, where in the SET regime a single transport
channel carries a current ±I0. Ellipsoidal trajectories through the diagram are
traced, with a shape depending on the phase difference ϕ between the two ac
voltages. (b) Calculated time dependence (top) of the average current Ī (in units
of I0) for V dc

sd = 0, ϕ = 0 and finite V ac
g , when modulating the source–drain

voltage with V ac
sd = 0.1 · cos(δωt). The bottom panel shows the component ILIA

of Ī at the lock-in frequency δω. (c) Simulated down-mixed nanotube current
ILIA (top panel) when sweeping the driving frequency around the mechanical
eigenfrequency (dashed line) for the same conditions as (b). The sharpness of
the edge of the signal determines how easily the resonance can be observed. In
practice, this may be limited by the width of the Coulomb peak on which the
signal is mixed (bottom panel), i.e. by the temperature kBT or coupling 0.

To analyse mixing in the presence of CB, a simple model is used, where tunnelling between
the nanotube and the leads takes place through a single quantum level. The current in the blocked
regions is zero, while in the conducting regions it assumes a constant value ±I0. This can be
written as I = I0 · [H(Vg + Vsd/2) − H(Vg − Vsd/2)], where H is the Heaviside stepfunction;
such a current dependence on Vg and Vsd is depicted in figure 5(a), sketching the stability
diagram of the quantum dot.

When using the mixing technique, the bias and gate voltages Vsd and Vg are the sum of
ac and dc components. In other words, while time elapses, the bias and gate voltages trace
trajectories through the stability diagram. This is sketched in figure 5(a), depending on the
phase relationship between V ac

g and V ac
sd . The trajectories are ellipsoidal since V ac

g and V ac
sd vary

as cos ωt and cos(ωt + ϕ). Well inside the CB region, the current remains zero at all times.
However, when such a trajectory crosses the edge of the CB region, fast current oscillations
occur, since the quantum dot within the nanotube is continuously switching into and out of the
blockade. In the experiment, only the low-frequency components of the current are measured.
Thus, we calculate the corresponding time-averaged signal Ī , obtaining

Ī = I0 · A(V dc
−

/V ac
−

) − I0 · A(V dc
+ /V ac

+ ), (3)
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with the function A defined as

A(v) =

0 v > 1
arccos(v)/π −16 v 6 1,

1 v 6−1,

(4)

and

V ac
±

=
(
(V ac

g )2 + (V ac
sd /2)2

± V ac
g V ac

sd cos(ϕ)
)1/2

, (5)

V dc
±

= V dc
g ± V dc

sd /2. (6)

The signal depends on the position in the stability diagram via V dc
g and V dc

sd , on the magnitudes
of the ac gate and source–drain voltages V ac

g and V ac
sd , and on the phase difference ϕ between

them.
In an experimental realization, the frequencies of the two ac signals differ. Details depend

on the exact setup used: with the two-generator technique [10], because of the small frequency
offset the phase difference is effectively time dependent, i.e. ϕ = ϕ0 + δωt , whereas in our
one-generator setup (figure 2) the source–drain ac voltage is amplitude-modulated, i.e. V ac

sd →

V ac
sd cos(δωt). In both cases, the time-averaged current contains low-frequency oscillations at the

offset frequency δω that can be measured using a lock-in amplifier. In the following analysis,
only the single-generator setup is studied in detail.

The time-averaged current Ī is calculated numerically while modulating V ac
sd . From this,

the component of Ī at the offset frequency δω is extracted, resulting in the signal plotted in the
lower panel of figure 5(b) that a lock-in amplifier would detect. One sees that the Coulomb peak
is widened due to the ac voltages, but it still contains a sharp transition between the regions
with and without current. Note that this background signal is always present, even without any
displacement of the nanotube. The effect of nanotube vibrations is an apparent change in the
magnitude and phase of the ac gate voltage when Cac

g 6= 0, as can be seen from equation (2).
The effects of this feature become clear when the down-mixed current is calculated for different
driving frequencies (figure 5(c), top panel). Off-resonance, the original background signal from
the bottom panel of figure 5(b) is obtained. When approaching the mechanical eigenfrequency
(dashed line in figure 5(c)) a clear resonance can be seen, which is best visible in the shape of
the signal. This stands in contrast to the usual mixing signal (see section 2), where the resonance
appears in the magnitude of the current.

The sharp edges of the widened Coulomb peak (see the lower panel of figure 5(b)) enable
sensitive detection of vibrational motion of the nanotube. Its finite outer slope (i.e. towards
higher absolute values of V dc

g /V ac
g ) is due to the nonzero value of V ac

sd . A reduction of this
voltage gives an even sharper peak and therefore a higher sensitivity. However, at some point,
the broadening of the original Coulomb peak (lower panel of figure 5(c)) due to the electron
temperature or to coupling to the leads starts to dominate this slope and the sensitivity can no
longer be increased by reducing V ac

sd .
In conclusion, it is possible to detect the motion of a vibrating nanotube in the CB regime

using frequency down-mixing. However, a more detailed analysis is needed for finding the
ultimate limit on the sensitivity of this method.

4.2. Zero-point motion detection

The objective of observing a mechanical resonator in its quantum mechanical ground state
excludes applying a driving signal. Thus, a mesoscopic position detector needs to be coupled
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transistor as charge detector with a suspended carbon nanotube quantum dot. For
simplicity, additional control gates of the transistor are omitted; for dimensions,
see the main text. (b) Prediction of ‘classical’ current blockade through an
oscillating quantum dot (adapted from [33]): in the case analogous to very strong
electron–vibron coupling g, current may be blockaded for |eVsd|6 gh̄ω even if
h̄ω < kBT < gh̄ω. (c) Using a double quantum dot as phonon spectrometer [34]:
circuit diagram and energy level scheme for the limiting case of weak interdot
coupling.

to the mechanical system. This leads the way to many different types of experiments, from the
detection of the mechanical zero point fluctuation by, e.g., measuring the displacement noise as a
function of device temperature, to detector backaction effects and finally to the implementation
of a fully coherent quantum–mechanical coupling between the mechanical resonator and nearby
detector quantum systems (or ‘qubits’). Several detection and thereby coupling schemes have
been proposed for mesoscopic resonators. One possibility is the use of charge sensing by means
of a nearby metallic single electron transistor [2].

A simplified example of an integrated single electron transistor–suspended CNT device
geometry is sketched in figure 6(a). The transistor island is extended as a capacitive ‘antenna’,
maximizing the interaction. In the following, we will provide a rough estimate of the
possible deflection sensitivity. The minimal distance to the nanotube is given by fabrication
(alignment) precision. For a nanotube resonator with length L = 250 nm, diameter d = 1.4 nm,
and distance to the antenna h = 75 nm, an interaction capacitance of Ci ' 2 aF can be calculated.
Approximating the deflection sensitivity with the derivative of Ci by the nanotube–antenna
distance h, one obtains ∂Ci/∂h ' 0.005 zF pm−1. Assuming a typical value for the charging
energy of a nanotube quantum dot of EC = 4 meV [27] and a charge of Q = 100 e− on the
nanotube, this results in an influenced charge per nanotube deflection of q ' 1 × 10−5 e− pm−1

on the transistor island. As a reference, the characteristic length associated with the zero-point
motion of the mechanical oscillator is x0 =

√
h̄/mω ' 10 pm.

The current state of the art in terms of charge-detection noise, as published in [2], is given
by SQ ' 8 × 10−6 e−

√

Hz−1. However, published data on room-temperature measurements
indicate low mechanical quality factors [10, 11]. One can conclude that even though the
resonator properties may improve at cryogenic temperatures, for resonator frequencies of the
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order ∼1 GHz, the requirement of a sufficient signal-to-noise ratio still provides a considerable
challenge.

4.3. Energy spectroscopy of the bending mode

By optimizing nanotube devices towards shorter suspended length, bending mode frequencies
in the GHz range can be obtained (cf figure 1(c)); around a length of L = 50 nm, detection of
the bending mode in transport spectroscopy seems feasible. For the bending mode, electrostatic
modelling predicts a larger electron–vibron coupling g than for the stretching mode, because
the mechanical motion can be parallel to the electrical field lines (i.e. towards the gate
electrode). Estimates, however, show that g decreases for shorter devices due to the smaller
beam deflection. In addition, it strongly depends on the gate voltage Vg via the trapped charge
and the tension in the nanotube.

In order to reach high mechanical resonance frequencies, we have recently started
performing spectroscopic measurements on nanotube segments down to a length of L = 65 nm.
Experiments have not revealed any low-energy structure as yet. In view of the large number of
parameters influencing both the spectroscopic resolution and the bending mode frequency—e.g.
the quantum dot–lead coupling 0, the tension of the nanotube induced during fabrication, or the
nanotube diameter d—the observation of the lateral oscillator quantization may well be just one
small step away.

The magnitude of the electron–vibron coupling involved can also be verified for longer
nanotube resonator segments by looking at the classical counterpart of Franck–Condon
blockade. Calculations by Pistolesi and Labarthe [33] show that here a large coupling between
electronic and mechanical systems (corresponding to g � 1) leads to a suppression of low-bias
current in an energy region corresponding to e|Vsd| < gh̄ω independent of gate voltage Vg, even
though the temperature is not sufficiently low for resolving the vibrational quantization and the
quantum limit is thus not reached. This is illustrated in figure 6(b) with a schematic stability
diagram.

Finally, increasing the experimentally available spectroscopic resolution can be done by
defining double quantum dots [34]–[38]—with one quantum dot freely suspended—within the
nanotube. Choosing a very weak coupling of the quantum dot states to the leads and each other,
a highly sensitive phonon spectrometer may be formed [39]. The definition of a (partially)
suspended double quantum dot, however, requires a significantly more complex chip fabrication
due to the requirement of both a central barrier gate electrode and localized etching [34].
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