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Transport across a carbon nanotube quantum dot contacted with ferromagnetic leads:
Experiment and nonperturbative modeling
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We present measurements of tunneling magnetoresistance (TMR) in single-wall carbon nanotubes attached
to ferromagnetic contacts in the Coulomb blockade regime. Strong variations of the TMR with gate voltage
over a range of four conductance resonances, including a peculiar double-dip signature, are observed. The data
are compared to calculations in the “dressed second order” (DSO) framework. In this nonperturbative theory,
conductance peak positions and linewidths are affected by charge fluctuations incorporating the properties of
the carbon nanotube quantum dot and the ferromagnetic leads. The theory is able to qualitatively reproduce the
experimental data.
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I. INTRODUCTION

Controlling electronic spin in nano-scale circuits is a
long-lasting challenge on the way to fast-switching, energy-
efficient building blocks for electronic devices. To this end,
spin-dependent transport properties have been investigated
in a wealth of low-dimensional systems, e.g., mesoscopic
magnetic islands [1], 2DEGs [2], InAs nanowires [3], graphene
[4], and fullerenes [5]. Carbon nanotubes (CNTs), being thin,
durable and high-throughput wiring, allow coherent transport
of electronic charge and spin and are promising candidates
for future spintronics applications [6]. While control and
scalability of CNT-based nanocircuits still pose significant
challenges, devices where single carbon nanotubes (CNTs)
are contacted to ferromagnetic leads can be produced with
standard lithography methods: spin valve experiments were
performed on single-wall [7–10] (SWCNT) and multiwall
[11–15] carbon nanotubes in various electron transport
regimes. In most cases, a spatially confined quantum dot
is coupled to ferromagnetic electrodes. Electronic transport
across CNT quantum dots can take place in different regimes:
depending on the relative magnitude of coupling strength,
temperature and charging energy, this ranges from an opaque
Coulomb-blockade regime [16–19], to an intermediate cou-
pling regime with lead induced energy level shifts [20–22],
to a strongly correlated Kondo regime [23–26]. For highly
transparent contacts, in contrast, the dot behaves essentially
like an electronic wave guide [27,28].

In our work, we focus on the conductance of a carbon
nanotube quantum dot weakly coupled to ferromagnetic
contact electrodes, recorded for parallel (Gp) and antiparallel
(Gap) contact magnetization, respectively. Gp and Gap define
the so-called tunneling magnetoresistance (TMR) [27,29]:
TMR = (Gp/Gap) − 1. Experimentally, the TMR has been
shown to be strongly gate dependent [7,30]. We report on
shifting and broadening of conductance peaks resulting in
specific dip-peak and dip-dip sequences in the TMR gate
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dependence. Our data covers a range of four Coulomb
resonances with extremal TMR values of −20% to +180%.

The pronounced resonant structure of the conductances
Gp and Gap leads to large TMR values if the positions
and widths of the resonances depend on the magnetization
configurations p and ap. Thus, various mechanisms have
been proposed which induce a shift of the energy levels
of the quantum dot, and thus the of the resonance peaks,
depending on the magnetization of the contacts. Those are
spin-dependent interfacial phase shifts [7] or virtual charge
fluctuation processes [21,25]. The effect of spin polarized
leads on the resonance width have been described in Ref. [31]
for a resonant single level junction. Interestingly, a negative
TMR is predicted for asymmetric couplings to the leads. An
attempt to account for broadening in the presence of Coulomb
interactions was discussed within a self-consistent approach
based on the equation of motion (EOM) technique [20].
The EOM was applied to model TMR data reported for a
SWCNT [7] for a model with spin-dependent interfacial phase
shifts.

Here, we discuss a transport theory which naturally in-
corporates the effects of spin polarized leads on the position
and width of conductance resonances in the presence of
strong Coulomb interactions. It is an extension of the so-
called dressed second-order (DSO) transport theory, recently
developed for normal leads [22], to the case of spin-polarized
contacts. This theory accounts for energy renormalization and
broadening of the peaks in linear conductance due to charge
fluctuation processes. We show that the charge fluctuations
also affect transport through excited states in the nonlinear
conductance regime. This observation is in agreement with
previous reports on tilted co-tunneling lines in CNT quantum
dots [32]. A qualitative agreement with the experimental
findings is obtained.

This paper is structured as follows. We first present the
measurement details and experimental data in Sec. II. In
Sec. III, we introduce the so-called dressed second order theory
(DSO) [22] in the reduced density matrix transport framework
and address its implications on nonlinear conductance and
TMR. Finally, in Sec. IV, we provide a comparison between
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FIG. 1. (Color online) SEM picture of a chip structure similar
to that of the measured device. A carbon nanotube on a positively
doped silicon substrate capped with 500 nm SiO2 is contacted by two
permalloy stripes, one of which is exchange-biased by a FeMn layer.
On top, the stripes are protected by palladium. Gold is used for the
bond pads and the connections to the nanotube contacts.

experimental data and results from the DSO and draw our
conclusions in Sec. V.

II. EXPERIMENT

A. Sample preparation

For the purpose of measuring TMR in CNTs, one needs to
interface the nanotube to two ferromagnetic contacts with a
different switching field. The conductance, being sensitive to
the magnetization in the leads, changes when the polarization
of one of the contacts is reversed by an external magnetic field.
It has been shown that NiFe is well suited as a material for the
electrodes of CNT spin valves [33]: the alloy shows a distinct
switching behavior as a function of the applied magnetic field
and the interface transparency between NiFe and the CNT is
comparable to that of Pd. The structure of one of the devices
we realized for this purpose is shown in Fig. 1. On an oxidized
silicon substrate (500 nm SiO2) a carbon nanotube is grown
by chemical vapor deposition. The nanotube is located by
atomic force microscopy and two NiFe (80:20) leads, 20 nm
in thickness, are deposited at a distance of 1 μm on top
of the nanotube by sputtering. On one of the two contacts,
40 nm of antiferromagnetic FeMn (50:50) is sputtered to
bias the magnetization of the underlying NiFe contact. The
hysteresis loop of this contact is expected to be shifted with
respect to the pure NiFe contact by virtue of the exchange
bias effect [34]. A 20 nm protective layer (Pd) covers the leads
from the top. The switching of the exchange biased contacts
was confirmed independently prior to the measurement using
superconducting quantum interference device (SQUID) and
vibrating sample magnetometer techniques.

B. Measurement

An electronic characterization of the quantum dot at
300 mK and at zero magnetic field shows a regular Coulomb
blockade behavior (Fig. 2). The data yield a gate conversion
factor α = 0.29 and a charging energy of Ec = 6.1 meV [see
Eq. (1)]. The sample does not exhibit a clear fourfold symmetry
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FIG. 2. (Color online) Differential conductance vs bias and gate
voltage of a selected region measured at 300 mK and B = 0. The
numbers in the Coulomb blockade regions denote the number of
electrons in shell n on the quantum dot. Arrows indicate the first
excited state crossing the source (left) and drain (right) lines in the
vicinity of the state with one extra electron (N = 4n + 1).

in the peak height or peak spacing as expected for a carbon
nanotube quantum dot. Consequently, we are not able to label
the Coulomb blockade regions with a value of the electronic
shell filling n in a definite way. The assignment of the number
of electrons to the experimental data in Fig. 2 is done in
agreement with the theoretical predictions in Sec. III E.

Having a closer look at Fig. 2, we can identify an excited
state transition at 1.4 meV parallel to the source line (left
arrow) and at ∼1.8 meV parallel to the drain line (right
arrow). The energy scale of this excitation stays approximately
constant over a range of at least six resonances, as can be seen
from measurements over a broader gate range. The quanti-
zation energy ε(n) of a CNT shell n is a direct consequence
of the electron confinement along the nanotube. It yields a
mean level spacing ε0 = ε(n + 1) − ε(n) ∝ �vF/πL, where
L is the CNT length. It is thus reasonable to identify the first
excitation with the confinement energy ε0 equivalent to a lateral
confinement of 1.1 μm for a Fermi velocity of 800 km/s [35],
a value close to the contact spacing of 1 μm. The asymmetry
of the line spacing with respect to source and drain suggests a
gate-dependent renormalization [32] of the CNT many-body
addition energies in the presence of ferromagnetic contacts.
We show in Sec. III D that this can be a direct consequence of
charge fluctuations in the presence of contact magnetization.

Electron transport measurements at 300 mK show a
significant switching behavior. In Fig. 3, the conductance
across the CNT quantum dot is plotted against the magnetic
field directed parallel to the stripes, i.e., along their easy
axis, as indicated in the inset to the figure. The steps in the
signal can be interpreted as the magnetization reversal of the
contacts, as sketched in the figure. Sweeping the magnetic
field from negative (−100 mT) to positive values, one of the
contacts switches at H = Hs,u, resulting in a configuration
with antiparallel polarization of the majority spins of the two
contacts. This results in a drop of the conductance signal. Upon
increasing the field further, the second contact is supposed
to switch and the conductance should recover. The second
switching event was not observed in the present sample.
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FIG. 3. (Color online) Differential conductance plotted vs mag-
netic field at Vg = 8.1737 V, Vb = 0 and 300 mK. The solid red
curve was recorded with increasing field, the dashed blue curve with
decreasing field. Small pictograms indicate possible orientations of
the majority spins in the contacts. The switching of one of the
two contacts at Hs,u/d is highlighted with arrows at the bottom for
both sweep directions. The coercive field is indicated by Hc and the
exchange bias by Hex. (Inset) Orientation of the external field B with
respect to the CNT and the leads.

Sweeping back from positive to negative field, the conductance
recovers at Hs,d. The two values Hs,d/u characterize a hysteresis
loop with a coercive field Hc = Hs,u − Hs,d and an exchange
bias Hex = (Hs,u + Hs,d)/2. At B = 0, the two contacts are
always in a parallel configuration, because the coercive field
of the switching contact is smaller than the exchange bias.

Measurements of the conductance performed at zero mag-
netic field require �t fast ∼ 100 ms per data point and will be
called the fast measurements in the following. Contrarily, in
slow measurements, each conductance data point is obtained
from magnetic field sweeps with a duration of �t slow ∼ 20
minutes at constant gate voltage (compare Fig. 3). We then
identify Hs from a step in the conductance signal and take the
average over 100 points on either side of the step to extract
the conductance in the parallel and antiparallel configuration,
respectively. This is repeated for 250 values of the backgate
potential in the range between 8.126 and 8.201 V. In Fig. 4,
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FIG. 4. (Color online) Differential conductance and TMR as a
function of gate voltage measured over four resonances (slow
measurement, see text). The conductance is measured at parallel
polarization of the contacts. The TMR graph shows a dip-peak
sequence over the first two resonances and a qualitatively different
double-dip feature at the last two.
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FIG. 5. (Color online) (Left) Schematic drawing of the lead
induced, polarization dependent, modification of position (a) and
width (b) of a peak in the conductance across a quantum dot as a
function of the gate voltage. (Right) As a consequence of the level
shift (a) and level broadening (b), the corresponding TMR signal
exhibits a characteristic dip-peak (c), or dip-peak-dip (d) feature.

the TMR as a function of gate voltage is shown together
with the conductance at parallel contact polarization. In this
slow measurement, we obtain conductance peaks with a height
of 0.15e2/h and a full width at half maximum (FWHM) of
� ∼ 0.7 meV. Comparing these values to a height of 0.3e2/h

and a width of 0.4 meV obtained from the fast measurement at
B = 0 we conclude that the peak conductance in the data from
the slow measurement is substantially suppressed. We will
discuss this deviation in Sec. IV. It is remarkable that besides
huge positive (180%) TMR values, negative regions occur
prior to the peak in the TMR curve in the first two resonances,
while for the last two, the value drops again, forming two dips
in sequence. Again this will be discussed in more detail in
Sec. IV.

III. THEORETICAL MODELING

We proceed by presenting a theoretical framework capable
to reproduce the transport data from the previous section. In
particular, the connection between the theory and the resulting
shape of the TMR curve will be discussed in detail. In order
to be able to account for a gate dependence of the TMR, the
transport theory should be able to incorporate the influence
of the ferromagnetically polarized leads on the positions of
the linear conductance maxima as well as on the width of the
conductance peaks.

Noticeably, the commonly used perturbative description
of the Coulomb resonances predicts temperature broadened
peaks and maxima whose positions are solely determined
by the isolated quantum dot spectrum implying a constant,
positive TMR [21].

A transport theory accounting for charge fluctuations
nonperturbatively was shown to shift the quantum dot energy
levels depending on the magnetization configuration of the
leads [21]. The qualitative effect of the renormalization is
depicted in Fig. 5(a): The peak in the conductance Gp in
presence of leads with parallel spin polarization is shifted with
respect to the one in Gap, the conductance in the antiparallel
case. This shift yields a characteristic dip-peak feature in the
TMR signal, similar to what was observed in Ref. [7]. Yet, this
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theory cannot account for the double-dip like TMR signatures
visible in our data (see Fig. 4, Vg ∼ 8.19 and ∼8.17 V). These
require additionally a change of the resonance linewidth when
switching from the parallel to the antiparallel configuration, as
shown in Fig. 5(b) and also observed lately in Ref. [30].

In the following, we discuss how to theoretically account
for broadening and renormalization effects, to lowest order in
the coupling �, within the recently proposed “dressed second
order approximation” (DSO). The DSO has been discussed in
Ref. [22] for the single impurity Anderson model with normal
metal leads, where it has been shown to correctly capture the
crossover from thermally broadened to tunneling broadened
conductance peaks. Here we present its generalization to a
multilevel system coupled to ferromagnetic leads.

A. Hamiltonian

We treat the system as an isolated quantum dot coupled
to metallic leads. The Hamiltonian of such a system reads
Ĥ = ĤR + ĤD + ĤT. Here,

ĤR =
∑
lσk

εlσkĉ
†
lσkĉlσk

is the Hamiltonian of an ensemble of noninteracting electrons
in the leads l = s/d with wave vector k and spin σ . The
operator ĉlσk (ĉ†lτσk) annihilates (creates) an electron with
energy εlσk. The second part,

ĤD = 1

2
EcN̂2 +

∑
nτσ

[
ε(n) + τσ

�SO(n)

2

]
N̂nτσ

− eαVgN̂ + Ĥ
P/A
ext , (1)

describes the electrons on the CNT quantum dot in terms of
the quantum numbers n (shell), spin σ and valley τ . Here,
we used N̂nτσ = d̂

†
nτσ d̂nτσ , with the fermionic dot operator

d̂nτσ and N̂ = ∑
nτσ N̂nτσ , the total dot occupation. For our

purposes, it is sufficient to account for Coulomb interaction
effects in terms of a capacitive charging energy Ec. Short-
range exchange contributions are neglected here. The symbols
τ and σ represent the eigenvalues ±1 of the states with
quantum numbers K,K ′ and ↑,↓, respectively. In the CNT,
a nonzero spin-orbit coupling �SO can lead to the formation
of degenerate Kramer pairs [26]. Notice that, for simplicity, a
valley mixing contribution is not included in Eq. (1), as it would
not affect the main conclusions drawn in this work. Hence the
valley degree of freedom is a good quantum number to classify
the CNT’s states [36]. The next to last part of the Hamiltonian
ĤD models the effect of an electrostatic gate voltage Vg scaled

by a conversion factor α. Finally, Ĥ
p/a
ext accounts for external

influences on the dot potential, e.g., stray fields from the
contacts and the external magnetic field used to switch the
contact polarization.

The ground states of shell n have 4n + a (0 � a � 3)
electrons and will in the following be characterized by the
quantum numbers of the excess electrons with respect to the
highest filled shell n − 1. For instance, the quantum dot state
labeled by |K↑; n〉 contains 4n electrons plus one additional
electron in the (K,↑) state. Including states with 4n − 1 and
4n + 5 electrons we end up with six ground states with

TABLE I. The set of allowed electronic ground states C of the
CNT with N electrons for large (right) and small (left) spin-orbit
coupling �SO. The degeneracy of the configuration depends on the
magnitude of �SO. In the first column, the excess electron number
Nrel = N − 4n is reported with respect to the number 4n of electrons
in the filled (n − 1)-th shell.

Nrel �SO � max{kBT ,γ0} �SO � max{kBT ,γ0}
−1 |K↑,K↓,K ′↑; n − 1〉

|K↑,K↓,K ′↓; n − 1〉
|K↑,K ′↑,K ′↓; n − 1〉
|K↓,K ′↑,K ′↓,n − 1〉

|K↑,K↓,K ′↑; n − 1〉
|K↑,K↓,K ′↓,n − 1〉

0 |n〉 |n〉
1 |K↑; n〉 |K↓; n〉|K↑; n〉 |K↓; n〉

|K ′↑; n〉 |K ′↓; n〉
2 |K↑,K↓,n〉|K↑,K↓; n〉 |K↑,K ′↑; n〉

|K↑,K ′↓; n〉 |K↓,K ′↑; n〉
|K↓,K ′↓; n〉 |K ′↑,K ′↓; n〉

3 |K↑,K↓,K ′↑; n〉
|K↑,K↓,K ′↑; n〉
|K↑,K ′↑,K ′↓; n〉
|K↓,K ′↑,K ′↓; n〉

|K↑,K↓,K ′↑; n〉
|K↑,K↓,K ′↓; n〉

4 |n + 1〉 |n + 1〉
5 |K↑; n + 1〉 |K↓; n + 1〉|K↑; n + 1〉 |K↓; n + 1〉

|K ′↑; n + 1〉 |K ′↓; n + 1〉

different degeneracies (see Table I, left column). In total,
we consider a Fock space of dimension 24 if the fourfold
degeneracy is not lifted by a sufficiently large spin-orbit
coupling �SO. The extra states with occupation 4n − 1 and
4n + 5 are included to allow for charge fluctuations in and
out of the shell n under consideration. Conversely, for large
enough spin-orbit coupling the dimension of the Fock space is
reduced to 10, see Table I, right column. Judging from the
stability diagram in Fig. 2 and from data over a greater gate
range where we see no twofold pattern in the spacing of the
excited state lines, we consider the configuration on the left
side in Table I to be more likely. For a compact notation, the
shell number will in the following be neglected from the state
ket if not necessary.

Quantum dot and metallic leads are coupled perturbatively
by a tunneling Hamiltonian

ĤT =
∑
lknστ

Tlknστ d
†
nστ clkσ + H. c. , (2)

with a tunnel coupling Tlknστ generally dependent on the
quantum numbers of both leads and quantum dot. In the
following, for simplicity, we assume that Tlknστ = Tl .

B. The reduced density matrix within the dressed
second-order (DSO) approximation

We describe the state of our system by the reduced density
matrix ρ̂ = TrR{ρ̂ tot}, obtained by tracing over the possible
configurations of states in the reservoirs, assuming that they
are in thermal equilibrium. For the quantum dot itself, we
suppose that it reaches a steady state characterized by ˙̂ρ = 0.
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The corresponding stationary Liouville equation reads [22]

0 = − i
∑
aa′

δabδa′b′ (Ea − E′
a)ρaa′ +

∑
aa′

Kaa′
bb′ ρaa′ , (3)

in terms of matrix elements ρab = 〈a|ρ̂|b〉 of ρ̂ in the
eigenbasis of the quantum dot. The superoperator K connects
initial states |a〉, |a′〉 to final states |b〉 and |b′〉 at a certain
order in the perturbation ĤT.

The calculation of the kernel elements is performed along
the lines of Ref. [22]. As an example, the element connecting
the states |b〉, |b′〉 = |b〉 and |a〉, |a′〉 = |a〉 is given in second
order by

Kaa
bb =

∑
l

�
p

l,ba =
∑

l

i

�
lim

λ→0+

∫
dε

γ ba
l (ε)f p

l (ε)

Eb
a − ε + i λ

+ H. c. ,

where �
p

l,ba is the corresponding tunneling rate. The function
f

p

l (ε) with p = ± is defined as f ±
l (ε) = [1 + exp{±β(ε −

μl)}]−1, where β is the inverse temperature and μl the lead’s
chemical potential. Hence, f +

l (ε) = fl(ε) is the Fermi function
and describes the occupation probability in lead l. In general,
p = ±1 if the final state |b〉 has one electron more/less than
the initial state |a〉. The energy difference between final and
initial dot configuration is given by Eb

a = Eb − Ea = Ẽb −
Ẽa − eαVg(Nb − Na). Finally,

γ ba
l (ε) = γlσ (b,a)(ε) = |Tl|2Dlσ (ε)

is a spin-dependent linewidth defined in terms of the tunneling
amplitude Tl and of the spin-dependent density of states
Dlσ (ε). A Lorentzian provides a cutoff for the density of states
at a bandwidth W . The notation σ (a,b) indicates that the spin
σ of the electron tunneling out of/onto lead l depends on the
spin configuration of the initial state a and the final state b of
the quantum dot. It is convenient to introduce the spin-resolved
density of states of lead l at the Fermi energy

Dlσ = Dlσ (εF) = D0(1 + σPl)/2, (4)

where Pl = (Dl↑ − Dl↓)/(Dl↑ + Dl↓) is the polarization of
lead l. The couplings |Tl|2 we define in the same spirit as

|Ts/d |2 = |T0|2(1 ± a)/2, (5)

using the parameter a to tune the asymmetry in the coupling
to the leads. We will in the following use the factorization

γlσ (b,a)(εF) = γ0κlσ , (6)

where we collect the lead and spin independent prefactors
in an overall coupling strength γ0 = D0|T0|2 and include
the dependence on spin and lead index in the dimensionless
parameter κlσ , where

∑
lτσ κlσ = 1. Note that γ0 is related to

the level broadening �0 by �0 = 2πγ0.
In Fig. 6(a), a diagrammatic representation of one contri-

bution to the second order kernel is shown for the case of
|a〉 = |0〉 and |b〉 = |τσ 〉. The fermionic line connecting the
lower to the upper contour carries indices l,ε,σ which fully
characterize the nature of the electron tunneling between lead
l and quantum dot. The direction of the arrow further specifies
if the electron tunnels out of (towards lower contour) or onto
(towards upper contour) the dot. Beside this lowest (second)
order contribution, we consider all diagrams of the structure
shown in Fig. 6(b). The selected diagrams contain arbitrary

final initial

τσ 0

τσ 0

lεσ

l1ω1σ1 l2ω2σ2

l3ω3σ3

τσ 0

τσ 0

lεσ
(a)

(b)

FIG. 6. (Color online) Diagrammatic representations of the con-
tributions to the rate �+

l,τσ0 in second order (a), and an example of
diagrams included in the DSO (b). In the latter case, the fermion line
(blue) from the second-order theory is “dressed” by charge fluctuation
processes. The labels below the fermion lines denote energy and spin
of the particle tunneling from/onto the lead. Note that the diagram is
read from right to left, i.e., the initial state |0〉 can be found on the
right and the final state |τσ 〉 on the left.

numbers of uncorrelated charge fluctuation processes (bubbles
in Fig. 6). During the charge fluctuation, the dot state on the
upper contour has one charge less or more compared to that of
the final state |τσ 〉. Hence the virtual state is either the state
|0〉 or one of the many (see Table I) doubly occupied states.
On the lower contour, the fluctuations take place with respect
to the initial state |0〉. Examples of charge fluctuations in the
case of initial state |0〉 and final state |K↑〉 are shown in Fig. 7.
Summing all diagrams of this type yields the DSO rates:

�+
l,ba = 1

2π�

∫
dε νba

l (ε)f +
l (ε), (7)

for a state b that can be reached by an in-tunneling process
from state a, and

�−
l,ab = 1

2π�

∫
dε νba

l (ε)f −
l (ε) (8)

for an out-tunneling process b → a. Note that we introduced
a tunneling-like density of states (TDOS)

νba
l (ε) = γ ba

l (ε) Im (�ba(ε))[
Im (�ba(ε))

]2 + [
ε − Eb

a + Re (�ba(ε))
]2 . (9)

We refer to the contribution �ba in the denominator of the
TDOS as a self-energy that infers from the contributions of
all possible charge fluctuations connected to the initial, a, and
final, b, states in the state space given in Table I. Explicitly,

�ba(ε) =
∑

c ∈ {b,a}
c′ ∈ C±

c

ac′c
ba (ε), (10)

with the sets C±
b/a given by

C±
b/a := {c′ : Nc′ = Nb/a ± 1 ∧ 4n − 1 � Nc′ � 4n + 5}.

(11)
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FIG. 7. (Color online) Example of possible charge fluctuations
for a final state (|K↑〉, left, shaded gray) with one extra electron and
an initial state with zero electrons in the shell n (|0〉, right, shaded
gray). This set corresponds to one specific diagram of the type shown
in Fig. 6(b). States that can be reached by in-tunneling of an electron
are shown on top, states that can be reached by out-tunneling of an
electron are shown on the bottom. Dashed frames highlight resonant
(Ec′/b

a/c′ = 0) charge fluctuations. Above and below the level schemes,
the energy difference between the virtual state and the state on the
other contour is given: the energies of the states accessible from the
initial (final) state are compared to the energy of the final (initial)
state on resonance (ẼK↑

0 = eαVg). Note that the electron number of
the states that can be reached by in-tunneling on the left and the
number of electrons in the initial state on the right differ by two. The
same situation occurs for the final state and the out-tunneling states
on the right. The energy differences for this class of fluctuations is
of the order of Ec. A comparison of the electron number of the final
state with the in-tunneling states on the left and the initial state with
the out-tunneling states on the right yields a difference of zero. These
fluctuations have comparably low energy cost.

The sets are shown in Fig. 7 for the states |a〉 = |0〉 and |b〉 =
|K↑〉. The summand

a
c′(b/a)
ba (ε) =

∑
l

∫
dω

γ
c′(b/a)
l (ω)f p

l (ω)

±pω + ε − E
c′/b
a/c′ + i η

accounts for a transition from b or a to a state c′, with c′ ∈ C
p

b/a .
Performing the integral, we arrive at an analytic expression for
the contributions to the self-energy, i.e.,

a
c′(b/a)
ba (ε)

=
∑

l

γ
c′(b/a)
l (ε)

[
i πf

p

l

(±p
(
E

c′/b
a/c′ − ε

))
± (

�̂(0)(W )− Re
{
�̂(0)

[
i
(
μl ± p

(
E

c′/b
a/c′ −ε

))]})]
,

(12)

where �̂(0)(x) = �(0)(0.5 + x/2πkBT ) and �(0) is the
digamma function. Note that the dependency on the bandwidth
drops out due to the alternating sign of the contributions from
the upper and lower contour in the summation in Eq. (10).
Having calculated the self-energy, we are now able to collect all

rates according to the transitions in our state space, and solve
the stationary Eq. (3) to obtain the occupation probabilities
ρaa = Pa . Within the steady state limit, we can neglect
off-diagonal entries ρba if they are among nondegenerate
states [21]. According to Table I, the CNT spectrum can be spin
and valley degenerate. However, the tunneling Hamiltonian (2)
conserves the spin during tunneling, and thus spin coherences
are not present in the dynamics. Here, for simplicity, orbital
coherences are neglected as well.1

C. Current within the DSO

The current through the terminal l can be written in terms
of the difference of in- and out-tunneling contributions at the
junction [37]:

Il(Vb) = e

2π�

∑
a ∈ C

c ∈ C+
a

∫
dε

× [Pa(Vb)f +
l (ε) − Pc(Vb)f −

l (ε)]νca
l (ε, Vb), (13)

where Vb is the bias voltage applied between the two contacts,
and C is the set of all possible configurations (see Table I). In
general, the populations can be expressed in terms of rates via
the Liouville equation (3) and a closed form for the current
and, consequently, for the conductance can be found. This
is straightforward if two states are connected by pairwise
gain-loss relations [37]. For the case of the single-impurity
Anderson model, for example, a compact notation of the
conductance can be given [22].

The width of a resonance in conductance with respect
to the gate potential is determined by the populations, the
TDOS which has a form similar to a Lorentzian, and by the
derivative of the Fermi functions. Note that the populations
are themselves a function of the rates and therefore are also
governed by the resonance conditions of the rates. The DSO
theory has been proven to be quantitatively valid down to
temperatures 4kBT ∼ γ0 in the single electron transistor [22].
Upon decreasing of the temperature below γ0/4, a quantitative
description of the transition rate �ac

l would require to calculate
� beyond the lowest order in γ0. In the regime where tem-
perature and coupling are of comparable magnitude, the width
and position of the Coulomb blockade peaks in a gate trace are
strongly influenced by the TDOS and, more precisely, by the
self-energy �. The role of Re(�) is to influence the positions of
the Coulomb blockade peaks: In the rate for the transition a to
b, the real part appears next to the energy difference Eb

a of the
transition in the denominator. Hence, due to this contribution
the resonant level is shifted depending on the configuration of
the leads.

1For CNTs of the zigzag type, coherences are not expected to
contribute to the dynamics for tunneling processes which conserve
the crystal angular momentum, i.e., for which the perpendicular
component k⊥ of the momentum k is conserved during tunneling.
This is because in zigzag type CNTs the two valleys correspond to
different values of the crystal angular momentum.
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D. Renormalization of excited states

In the stability diagram in Fig. 2 we observe an asymmetry
in the spacing of lines associated with excited states connected
to one charging state, as drawn schematically in Fig. 8. The
line 0 → 1′ meets the diamond at bias voltage Vb1. Measured
along the bias voltage axis, this value is larger than the
energy difference Vb2 associated with the line 2 → 1′ on
the right. A similar behavior has been discussed previously
for the co-tunneling regime [32]. As noted by these authors,
the asymmetry can not be explained within the sequential
tunneling picture but can be attributed to the renormalization
of the excitation energies Eb

a in Eq. (9) due to virtual tunneling
processes. Although the framework in Ref. [32] is different,
the evaluation of Re(�ba) is similar to that in our model. The
condition for a resonance for a transition between states a and
b is given by

ε ± e Vb /2 + eαVg − Ẽb
a + Re(�ba) = 0, (14)

where ε is the energy of the tunneling electron with respect to
the chemical potential of the unbiased contact μ0. Note that this
condition can be fulfilled for different transitions at the same
time, a situation that occurs at any point where two lines in a
stability diagram intersect. In order to interpret the observed
shift of the excited state line in the differential conductance
data in Fig. 7, it is illuminating to study the contribution from
Re(�) at points (Vg1,Vb1) and (Vg2,Vb2) marked by a dot and
a circle, respectively, in Fig. 8. We consider an exemplary
set of states 0 = |0; n〉, 1 = |K↑; n〉, 1′

1 = |[K↑]; n〉, 1′
2 =

|K↑,K↓,(K ′↑); n〉 and 2 = |K↑,K↓; n〉. A similar analysis
can be carried out for other states with 4n + 1 and 4n + 2
electrons. The quantum numbers in round brackets denote a
missing electron of shell n − 1 whereas the square brackets
indicate a state of shell n + 1. For each of the highlighted
points in Fig. 8, two conditions in the form of Eq. (14) can be

0    1'

4n+0
4n+1

2     1'

V
g

V
b

4n+2

FIG. 8. (Color online) Schematic drawing of the conductance
lines in the vicinity of the charging state with 4n + 1 electrons
in Fig. 2. The first visible excitation is shifted upwards on the
left and downwards on the right side of one charging diamond by
e(Vb1 − Vb2)/2 = −δ1. The corresponding energies in Fig. 2 are
eVb1/2 � 2 meV and eVb2/2 � 1.4 meV. For our analysis, we
choose bias and gate voltages close to the filled dot for the first
transition 0 → 1′ and to the empty circle for the second transition
2 → 1′.

given. Subtracting them pairwise, we are left with

eVb1 − E1′
1 + [Re(�1′,0) − Re(�1,0)] = 0, (15)

eVb2 − E1′
1 + [Re(�2,1) − Re(�2,1′

)] = 0, (16)

where the self-energy contributions depend on bias and gate
voltage. To lowest order in γ0, we analyze the differences
in Re(�) using eVb1/2 = E1′

1 and αeV
1/2

g = Ẽ
1/2
0/1 ± eVb/2

at ε = 0. In order to calculate Re(�), we have to analyze
the contributions from all accessible states in Eq. (10). In
principle, there are arbitrarily many states that can be reached
by a charge fluctuation. However, we assert that the available
energy interval for charge fluctuation processes is given by
max(eVb,�0,3 − 4kBT ) and contributions beyond this scale
are suppressed. Numerical results using a larger bandwidth
can be found in Appendix A.

For our considerations, we assume that the spin orbit
coupling of our CNT quantum dot is small, i.e., �SO <

max(kBT ,�). Otherwise, we would expect to see a twofold
symmetry in the spacing of the excited state lines in the stability
diagram in Fig. 2. The other important scales—charging
energy, shell spacing and linewidth—are related in the way
Ec > ε0 � max(kBT ,γ0). Within this choice of parameters
the difference of the self-energy corrections for the resonant
transition can be calculated by (15)−(16)= 0, i.e.,

δ1 ≡ [Re(�1′0) − Re(�10)] − [Re(�21) − Re(�21′
)]

� γ0{−1 + 2κ̄s − κ̄d + κ̄↑ − κ̄↓}�0
R(ε0/2), (17)

where we used the abbreviation �0
R(ε) = Re[�0(1/2 +

i ε/2πkBT )] and a bar denotes a summation over indices,
e.g., κ̄l = ∑

σ κlσ . A detailed derivation of these quantities
is given in Appendix B. Similar calculations are performed
for the excited states in the n + 2 and n + 3 diamonds,
yielding

δ2 � γ0{κ̄s − κ̄d + κs↓ − κd↑}�0
R(ε0/2),

δ3 � γ0{1 + κ̄s − 2κ̄d + κ̄↓ − κ̄↑}�0
R(ε0/2),

where the states with three electrons are chosen to be electron-
hole symmetric with respect to the state with one electron.
Note that for the case of symmetric couplings the shifts
reflect the electron-hole symmetry of the system while a
choice of a �= 0 [Eq. (5)] breaks this symmetry. For highly
asymmetric couplings |a| ∼ 1, the shifts are comparable to
those in Ref. [32]. Note that the effective change of the
resonance with respect to the energy difference has a negative
sign [compare Eq. (14)]. The resonance marked by the left
arrow in Fig. 2 is situated above the resonance marked by
the right arrow. The experimental data thus corresponds to a
negative shift. We therefore assume an asymmetric coupling
to the leads with a dominant coupling to the drain contact,
i.e., κs < κd, −1 < a < 0. Using the parameters from a fit
to the data in Sec. V, i.e., a = −0.7 and ε0 = 1.4 meV, we
obtain δ1 ≈ −0.2 meV and δ2 ≈ −0.1 meV. Compared to the
shifts in the experimental data, these values are too small by a
factor of 2–3. We expect that additional states may contribute
to the charge fluctuations that are not considered within this
approximation.
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E. Tunneling magnetoresistance

Corrections to the conductance peak width are given by
Im(�). Because Re(�) and Im(�) both depend on the different
magnetic properties of the source and drain leads as well
as on the dot’s configuration, the resulting impact on the
TMR is quite intricate. Thus we analyze the contributions
to the self-energy in the light of different configuration of the
lead’s polarizations. We focus on the last resonance, i.e., the
transitions |0,n + 1〉 � {|(στ ),n + 1〉} where the TMR graph
in Fig. 4 exhibits a double dip like structure. The back-gate
voltage is tuned such that

ε + eαVg − Ẽ0
(τσ ) + Re(�0,(τσ )) = 0,

and the quantum numbers in round brackets (τσ ) denote a
missing electron of shell n + 1. At lowest order in the tunnel
coupling γ0, we approximate eαVg = Ẽ0

(τσ ) when we calculate
Re(�0,(τσ )). From Eq. (12), we list the imaginary part of the
self-energy for this transition, i.e.,

Im(�0,(τσ )) = πγ0

∑
l

⎡
⎣∑

c∈C+
0

κlσ (c)f
+
l

(
Ec

(τσ ) − ε
)

+
∑

c′∈C−
0

κlσ (c′)f
−
l

(
ε − Ec′

(τσ )

)

+
∑

c∈C+
(τσ )

κlσ (c)f
+
l

(
ε − E0

c

)

+
∑

c′∈C−
(τσ )

κlσ (c′)f
−
l

(
E0

c′ − ε
)⎤⎦ .

The magnitude of the energy difference of the virtual state with
respect to the state on the other contour determines whether a
possible charge fluctuation contributes to the renormalization
of the self-energy or not: a contribution f +

l (Ec − ε), e.g., is
exponentially suppressed in the vicinity of the resonance.

Therefore, knowing the arguments in the step functions f ±,
we can simplify the result significantly. Close to the resonance
where |ε| < max(kBT ,γ0), the fluctuations with an energy cost
of the charging energy Ec or of the shell spacing ε0, e.g., the
states that can be reached by out-tunneling from the state |(τσ )〉
can be neglected. Focusing on the resonant contributions, we
are left with

Im(�0,(τσ ))

πγ0
�

∑
l

[
κlσ f +

l (ε) +
∑
τ ′σ ′

κlσ ′f −
l

(
ε − E

(σ ′)
(σ )

)]
.

(18)

It is clear from this result that the broadening of the TDOS peak
does depend on the lead configuration {κlσ }. Let the majority
spins be polarized such that σ = +1 in the layout with parallel
lead polarization. The sum over the leads is then given by∑

l κ
p
lσ = (1 + σP )/4 and

∑
l κ

ap
lσ = (1 + σPa)/4 for parallel

and antiparallel polarizations, respectively. Let us first consider
the case of zero effective Zeeman splitting, i.e., Eσ

σ̄ = E
(σ̄ )
(σ ) =

0. The difference of Im(�) for the two configurations then
reads

Im
[
�0,(τσ )

p − �0,(τσ )
ap

] = δIm = π
γ0

4 σP (1 − a)f +(ε). (19)

(a)

(b)

(c)

G
P

G
AP G

P
/G

AP
-1

B > 0
V

g

>

<

V
g

FIG. 9. (Color online) The influence of Im(�) on the TMR.
(a) Large gray arrows symbolize the majority spin in the left or right
contact. The contributions to the self-energy for one spin species
are summed for each configuration of polarized leads (parallel on
the left, antiparallel on the right) as indicated by the dashed frames.
Weak (strong) coupling to the dot (blue ellipse) is given by thin (thick)
arrows. Note that for the spin-down species the sum over the leads
yields a greater contribution in the configuration with antiparallel
polarization (as indicated by the signs between the dashed frames).
(b) On the left, we depict schematically the conductance peaks for
one resonance in both parallel and antiparallel configurations and the
resulting TMR (right). The broadening of Gp is typically larger than
for Gap in the absence of stray fields. (c) Due to a magnetic stray
field, the contribution to Im(�) in the parallel case can be reduced,
giving rise to a double dip structure in the TMR.

Note that the validity of this result depends on the ratio of
linewidth and level spacing, namely that γ0 � ε0 such that
only the selected small set of charge fluctuations contribute.
The sign of the difference in Eq. (19) is determined by σ ,
a result which is intuitively clear since the sum over the
couplings will be greater for the spin-up transition (σ = 1)
in the parallel case and for the spin-down transition in the
antiparallel one (σ = −1), as shown schematically in Fig. 9(a).
For zero energy splitting E

(σ̄ )
(σ ) , we would expect a broadening

of the peak associated with the transition 0 � (↑) for the
parallel configuration and a broadening of the peak in Gap for
the transition 0 � (↓). Note, however, that the second effect
will not be visible since the TMR ratio will be dominated by
the spin up transition. Hence, we will observe a TMR signal
as depicted in Fig. 9(b).

Now let us assume a nonzero effective Zeeman splitting
E

↑
↓ = E↑ − E↓ = g μB hp/ap of states with quantum numbers

σ =↑ / ↓. This splitting also depends on the magnetization
state p (parallel) or ap (antiparallel) of the contact electrodes.
The energy difference is expressed in terms of the effective
magnetic fields gμBhp and gμBhap. We assume that this field
is nonzero for both polarizations. Im(�) as well as the TMR
are very sensitive to the choice of the shifts, the couplings and
the polarization. The mechanism we want to discuss can be
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observed for different parameter regimes, but for the sake of
the argument it is sufficient to present one possible set that we
deduce from the experiment and the line of reasoning that goes
with it. In the last part of Sec. III D, we argue that couplings
κs < κd, or, similarly, 0 > a > −1 are needed to explain the
shift of the excited state lines in Fig. 2. Furthermore we point
out that the peaks in conductance in Fig. 4 are descending
in height as we fill the shell. In our model, the drain lead
switches polarization upon interaction with external magnetic
field, while the density of states in the weakly coupled source
contact remains unaltered. Given that the spin transport is more
sensitive to the bottleneck (source) contact, it is plausible to
assume that the shifts are such that the majority spins tunnel
first on the quantum dot, namely spin up electrons in both
configurations. These considerations favor a choice of negative
shifts gμBhap,gμBhp < −kBT . The second pair of resonances
is then dominated by spin down electrons and the respective
contributions f −(ε + g μB hp/ap) in Eq. (18) are suppressed.
Conversely, for spin-up electrons f −(ε − g μB hp/ap) = 1. In
the resonant case, |ε| � kBT , the imaginary part of the self-
energy for the |0〉 � |(σ )〉 then reads

δIm � −π
γ0

4
(1 − a)P [1 − σf −(ε)]. (20)

The magnitude of the relative broadening of the peak related
to the transition of a spin down electron in Gap is thus
increased for higher polarization and a → −1. Although this
estimate is only valid in the direct vicinity of the resonance,
it describes the situation qualitatively as can be seen in
Fig. 10. We show conductance and TMR nearby the resonance
|0,n + 1〉 � {|(στ ),n + 1〉} for fields gμBhp = −40 μeV and
gμBhap = −80 μeV. In the panels on the left side, the
polarization is varied keeping a = −0.8 fixed. We see that
the right shoulder in the TMR curve (c) is lifted upwards
with increasing polarization. On the right panels in Fig. 10,
we increase the coupling to the source contact which is
proportional to a. While the conductance is decreased for
asymmetric choices of a in both configurations [see (d) and
(e)], the magnitude of the peak in Gap is not symmetric with
respect to the coupling to source and drain. The TMR in
Fig. 10(c) can be related to Eq. (20): the shoulders for a = 0.8
turn into dips approaching a = −0.8. Please keep in mind that
this discussion is simplified since we do not account for the
fact that the relative position of the peaks changes, too, as
we vary the parameters a and P [compare Re(�) and Im(�)
plotted in Fig. 12 in Appendix A].

IV. COMPARISON

A. Conductance in the experiment and in the model

In Fig. 11(a) (blue circles), we show the conductance
Gfast

p obtained at B = 0 performing a fast measurement,
i.e., sweeping the gate voltage Vg at zero bias voltage, see
Sec. II B. Note that it provides only conductance data for the
parallel configuration (compare Fig. 3). The data from this
measurement yields conductance peaks that fit to Lorentzian
curves with an average FWHM of 0.3 meV. Adapting our
model parameters to the data of Gfast

p , we obtain the continuous
lines in Figs. 11(a), 11(b), and 11(d). The conductance data
from the slow measurement (compare Sec. II B) for the two

0.0

0.1

0.0

0.1

-0.2

0.0

0.2

G
p

(e2/h)

G
ap

(e2/h)

TMR

0.0

0.2

0.4

0.0

0.2

0.4
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0.0

0.2

0.4

0-5-10 5 10 0-5-10 5 10

(a)

(b)

(c)

(d)

(e)

(f)

P

0.2

0.4

0.6

a

- 0.8

0.0

0.8

FIG. 10. (Color online) Conductance and TMR calculations in
the vicinity of the resonance |0,n + 1〉�{|(στ ),n + 1〉} for different
polarizations P [(a)–(c), a = −0.8] and coupling asymmetry a

[(d)–(f), P = 0.4] applied in the parallel configuration for effective
Zeeman splitting gμBhp = −40 μeV and gμBhap = −80 μeV.
(a) and (b) Increasing the polarization reduces the peak width and
height of both Gp and Gap. (c) In the TMR curve, the shoulder on
the left at P = 0.2 is shifted to the right for P = 0.6. (d) and (e)
The coupling asymmetry a �= 0 diminishes the peak heights of the
conductance for both configurations of the leads. Note that in the
antiparallel case shown in (e) the symmetry between the contacts
is broken and the peak height is sensitive to the variation of the
dominating coupling. (f) The TMR curve exhibits a double dip
feature for values −1 � a < 0. It is transformed to a double peak for
0 < a � 1. All plots are calculated at a temperature corresponding to
40 μeV and a coupling γ0 = 160 μeV.

configurations, Gslow
p and Gslow

ap , are shown in Figs. 11(a)
and 11(b) (green crosses). The shape of the conductance peaks
turns out to be non-Lorentzian, with the peak height in the
conductance data limited to ∼0.1 e2/h. While the flanks of
the peaks match for the first three resonances in the data
from the slow and from the fast measurement,2 the maximum
conductance values deviate by a factor of three. So far, no full
explanation for the suppression of the peak conductance was
found.

2There is a deviation between Gfast
p and Gfast

p in Fig. 11(a) at the
right flank of the second resonance at Vg = 8.15 V due to jump in
the gate voltage during the measurement.
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FIG. 11. (Color online) Conductance at zero bias as a function of gate voltage Vg plotted for (a) parallel and (b) antiparallel polarization
of the leads. In (a), a gate trace [Gfast

p (Vg), blue circles] is shown together with conductance obtained during TMR measurements Gslow
p (B,Vg)

(green crosses, see also Fig. 4), and the calculated conductance for parallel lead polarization (continuous line, black) at kBT = 40 μeV, ε0 =
1.4 meV, Ec = 6.1 meV, a = −0.7, P = 0.4, gμBhap = −0.16 meV, and gμBhp = −0.12 meV. In the vicinity of the rightmost resonance,
Gfast

p shows a high noise level (compare also Fig. 2). (b) The conductance data measured for antiparallel polarization of the contacts Gslow
ap (B,Vg)

(green crosses) is compared to the model output (continuous line, black) for the same parameters as in (a). (c) Experimental TMR data calculated
from Gslow

p (a) and Gslow
ap (b) (also shown in Fig. 4). (d) TMR obtained from the model conductance [continuous lines in (a) and (b)].

B. Model parameters

A bare coupling of γ0 = 80 μeV is found to optimize the
fit to Gfast

p . The thermal energy is chosen as kBT = 40 μeV
(460 mK), close to the base temperature (300 mK). For
the quantum dot parameters we set Ec = 6.1 meV and a
shell spacing ε0 = 1.4 meV as inferred from Sec. II. The
shell number n ∼ 40 is estimated from the distance to the
band gap. We assume asymmetric contacts with a = −0.7
and polarization P = 0.4. For the calculation of the charge
fluctuations, we include all states within an energy interval
of 3ε0 (see Appendix A). The effective Zeeman shifts for
the model output in Fig. 11 are gμBhp = −0.12 meV and
gμBhap = −0.16 meV.

C. Discussion

If only features of the leads density of states at the Fermi
energy are included, compare Eq. (4), the DSO preserves
particle-hole symmetry by construction [22]. To break this
symmetry, a Stoner-shift of the majority band with respect
to the minority band should be included [25], whose effect
is analogous to that of an effective Zeeman field [21]. Such
effective fields have also been used to model the effects of
coherent reflections at the magnetic interfaces in double barrier
systems [7]. Since the data in Figs. 11(a)–11(c) does not reflect
particle hole symmetry, we use effective Zeeman splittings to
break the particle-hole symmetry and reproduce the observed
magnitude of the TMR effect. The splittings are of similar
magnitude as those used in Ref. [20] (gμBhp = 0.25 meV
and gμBhap = 0.05 meV) to explain the experimental TMR
data of Ref. [7].

In case of nonzero spin-orbit coupling [38,39], we would
expect a splitting of the excited state lines in the stability
diagram in Fig. 2. This is not resolved in our experimental
data. For simplicity we therefore here assume �SO = 0. Model
calculations with nonzero spin orbit coupling can be found in
Appendix C.

From the conductance traces calculated within our model,
Figs. 11(a) and 11(b) (continuous lines), the TMR, Fig. 11(d),
is obtained. The data and the model calculation agree in
the decay of the TMR amplitude within a sequence of four
charging states including the “double dip” feature in the last
two resonances at Vg = 8.17 and 8.19 V. This indicates that
the sequence in Fig. 11 represents one shell, i.e., charging
states 4n + 1 to 4(n + 1). We note that in the model output the
last resonance is dominated by a peak while the dips are more
prominent in the experimental data.

In the vicinity of all conductance peaks (at Vg = 8.13,
8.15, 8.17, and 8.19 V), an additional small shoulder around
TMR = 0 occurs in the data of Fig. 11(c). These shoulders
are likely related to the aforementioned suppression of the
peak conductance in the slow measurement [see Figs. 11(a)
and 11(b)]. We recall that the TMR is calculated from the ratio
Gp/Gap (compare also Figs. 5 and 9): in the regions where the
peaks are cut off, the ratio Gslow

p /Gslow
ap is smaller than it is in

the same region in the model output, where steep peak flanks
lead to a larger ratio Gp/Gap.

V. SUMMARY

The tunneling magnetoresistance of a carbon-nanotube
based quantum dot with ferromagnetic leads has been explored
both experimentally and theoretically. The experimental data
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shows a distinct variation of the tunneling magnetoresistance
(TMR) lineshapes within a single quadruplet of charging
states.

To model the data, we apply the dressed second-order
(DSO) framework based on the reduced density matrix formal-
ism. This theory accounts for charge fluctuations between the
quantum dot and the ferromagnetic contacts. Thereby, it goes
beyond the sequential tunneling approximation, which can
only account for a positive and gate-independent TMR. When
the charge fluctuation processes are summed to all orders in
the coupling to the leads according to the DSO scheme, they
yield tunneling rates where the Lamb shift and the broadening
of the resonances are given by the real and imaginary parts of
the self-energy, respectively. This is a nontrivial result which
yields the tunneling rates for an interacting quantum dot in the
intermediate parameter regime Ec � kBT ∼ � depending on
the polarization of the contacts.

We explicitly compare the DSO self-energy for different
contact magnetizations and show that the DSO modeling can
account both for the renormalization of excited states and the
specific structures observed in the TMR gate dependence. A
comparison of the TMR obtained from the model and from the
experimental data shows a qualitative agreement.
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APPENDIX A: CONTRIBUTION OF OTHER EXCITED
STATES TO THE RENORMALIZATION OF

THE SELF-ENERGY

When we discuss the effect of the charge fluctuations in
Secs. III D and III E of the main text, we always focus on the
most resonant transitions (see Fig. 7) that are energetically
favorable, i.e., on transitions in Eq. (12) with an energy
difference E

c′/b
a/c′ of the order of the effective linewidth or

below. At zero bias, this is the largest available energy scale
in the system. Nevertheless, it is interesting to see how the
outcome is affected by increasing the bandwidth and allowing
excited states of the neighboring shells to contribute to the
charge fluctuation channels. In terms of an effective energy
shift in a multilevel quantum dot, the renormalization due to
excited states was also discussed in Ref. [21]. To illustrate the
effect of such a modification we plot the real and imaginary
parts of the self-energy � in the vicinity of the transition
|(K↓),n〉 � | · ,n + 1〉 for different sets of charge fluctuations
within energy ranges of γ0, ε0, 2ε0, and 3ε0 in Fig. 12. We
clearly see that the fluctuations from higher shells manifest
themselves in additional features in the curves for Re(�),
Figs. 12(a) and 12(b), and Im(�), Figs. 12(c) and 12(d). Note,
however, that the zero-bias conductance in our system is only
sensitive to a small vicinity of a few kBT around the resonance.
Within this range the high-energy contributions do not change
the picture substantially. The analysis of the imaginary part in
Sec. III E is thus exact at the level of the self-energy since the

0

0 1 2
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-2 -1 0 1 2-2 -1

(a) (b)
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FIG. 12. (Color online) Re(�) [(a) and (b)] and Im(�) [(c) and
(d)] for both lead configurations as a function of energy ε in units
of the shell spacing ε0. Different lines are plotted for bandwidth
Wfluc = γ0 (green, dotted) to 3ε0 (red, continuous) in steps of ε0. In
the vicinity of a few kBT around the resonance (ε = 0, gray region),
the difference between the graphs for the real part [(a) and (b)] is
small and for the imaginary part [(c) and (d)], it is vanishing.

Fermi functions in the imaginary part suppress contributions
from other shells.

APPENDIX B: CALCULATION OF Re(�)

In this section, we perform the calculation of Re(�1′0) −
Re(�10) as part of the quantity δ1 introduced in Sec. III D of
the main text. To this extent, we analyze the renormalization
of the energy difference E1′

1 due to charge fluctuations to and
from states 0 = |0; n〉, 1 = |K↑; n〉 and 1′ = |[K↑]; n〉 in more
detail. We recall that the real part of the self-energy related to
a charge fluctuation to state c′ has the form [see. Eq. (12)]

−
∑

l

γ
c′(b/a)
l (ε)�0

R

(
μl ± p

(
E

c′/b
a/c′ − ε

))
,

where we have to replace b = 1′ and a = 0 or b = 1 and
a = 0, respectively. Note that the contribution ∝ �̂(0)(W ) in
Eq. (12) does not appear explicitly since it cancels in the
difference of the shifts. Next, we have to find all states c′
that contribute within our resonant approximation. We can
immediately discard states that can be reached by in-tunneling
from b and by out-tunneling from a, since their energy
differences E

c′/b
a/c′ are of the order of the charging energy

and thus beyond our charge fluctuation bandwidth of We =
max(eVb,kBT ,γ0) = ε0/2. We are left with states that can be
reached by in-tunneling into state a and by out-tunneling from
state b. Let us discuss one example for the state 1′. There is
one electron in the shell n + 1 (denoted by the brackets [. . . ]
in the state ket) which can tunnel out and we are left with
a state | · ,n〉. Actually, this state is identical to the state 0
on the other contour, thus Ec′=0

0 = 0. We can now evaluate
the argument of the digamma function, i.e., μl − E0

0 + ε, for
ε = 0. Since μs/d = ±ε0/2 and thus |μl| � We, we have to
sum over both leads. The total contribution from fluctuations
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to c′ = 0 is thus −γ0
∑

l κl↑�0
R(ε0/2). The other states that can

be reached by out-tunneling, e.g., |(K↑),[K↑],n〉, yield energy
differences of at least 3/2ε0 > We. Using similar arguments,
we can collect all relevant contributions to the difference
Re(�1′0) − Re(�10). In a graphical representation, this can
be visualized as

Re(Σ1′0) − Re(Σ10) =

= 2κ̄sΨ0
R(ε0/2)

out from 1′

in to 0

out from 1 in to 0

− 0 +

ε0 ε0 ε0 ε0

0 0 0 0

−ε0−ε0−ε0−ε0

+
0

ε0 ε0 ε0 ε0
−

0 0 0 0

−ε0−ε0−ε0−ε0

where one set of four boxes symbolizes one shell and we use
E

c′/b
a/c′ as a label. Fluctuations that cancel are crossed out. Note

that for excited states with an energy difference E
c′/b
a/c′ = ±ε0

we add only the contribution from the source(drain) contact
where |μl − E

c′/b
a/c′ | < We. Similarly, we find

Re(�21) − Re(�21′
) = (1 + κ̄d − κ̄↑ + κ̄↓)�0

R(ε0/2),

which leaves us with δ1 from Eq. (17).

APPENDIX C: SPIN-ORBIT COUPLING AND
VALLEY POLARIZATION

In Sec. III A, we discussed the possibility to include spin-
orbit interaction effects, as they have been reported to play a
prominent role in carbon nanotubes [38,40]. However, we did
not add it in the comparison to the experimental data since
they could not be resolved in the transport spectrum (Fig. 2).

8.13 8.15 8.17

0

1

2

8.19

TMR

gate voltage (V)

FIG. 13. (Color online) TMR as a function of gate voltage for
orbital polarization Porb = 0.6, orbital shifts gorbμorbh

orb
ap = −80

μeV and gorbμorbh
orb
p = −40 μeV, and �SO = 0.1 meV at kBT =

40 μeV. The other parameters are identical to the ones used in Fig. 11.

Nevertheless, values of the order of �SO ∼ 100 μeV would
still be consistent with the experimental data. Introducing a
finite �SO a priori does not affect the TMR as the Kramers
pairs are spin degenerate pairs with antiparallel and parallel
alignment of spin and valley magnetic moments. Yet it has been
argued that the two valleys of a CNT can couple differently
to the leads [41]. If the valley quantum number is conserved
upon tunneling, the mechanism can be understood in terms of
a valley polarization. A possible tunneling Hamiltonian that
describes this situation can be written as

ĤT =
∑
lknστ

Tlknστ d
†
nστ clkσ + H. c. , (C1)

with a valley dependent coupling Tlknστ and an operator clkτσ

that describes the electrons in the leads (that are also part of
the CNT). Including a valley polarization in turn also renders
the TMR sensitive to magnetic stray fields gorbμorbh

orb
p and

gorbμorbh
orb
ap along the tube axis. The orbital magnetic moments

gorbμorb are considered to be larger then μB by one order
of magnitude [42]. In Fig. 13, we present a TMR calcu-
lation for �SO = 100 μeV, orbital polarization Porb = 0.6
and stray fields gorbμorbh

orb
ap = −80 μeV and gorbμorbh

orb
p =

−40 μeV again combined with the experimental data. The
spin-dependent shifts are assumed to be negligible in this setup.
We see that the agreement with the experimental data improved
slightly in Fig. 13 at the expense of additional free parameters.
It is, however, outside the scope of this paper to discuss the
effect of spin-orbit coupling and the valley polarization in more
detail.
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