Microwave Journal Club


main page

group

publications

talks

posters

teaching



research group
PD Dr. A. Hüttel


research group
Prof. C. Strunk






personal homepage

Microwave Journal Club

The journal club "From superconducting GHz resonators to noise measurements below 4K" takes place weekly Friday 12:00 s.t., seminar room PHY 8.1.09.

Potential topics include, e.g.,

  • microwave resonators, reflectometry, hybrid quantum dot structures
  • nanotube nanomechanics, optomechanics
  • solid-state cavity qed experiments
  • noise in mesoscopic systems
  • finite frequency response of materials
  • time-domain control / measurement
  • quantum information technology

Please feel free to join us and suggest topics and/or papers. While the main focus is experimental, of course also theory contributions are welcome.

Schedule

Your browser does not support Javascript.

To see the schedule, please follow this link.



Paper suggestions

  1. X. Zhang, Z. Zhu, N. P. Ong, and J. R. Petta, Developing High-Impedance Superconducting Resonators and on-Chip Filters for Semiconductor Quantum Dot Circuit Quantum Electrodynamics, arXiv:2306.16499 (2023).
  2. A. Youssefi, S. Kono, M. Chegnizadeh, and T. J. Kippenberg, A Squeezed Mechanical Oscillator with Millisecond Quantum Decoherence, Nat. Phys. (2023).
  3. X. Wang et al., Topotactic Fabrication of Transition Metal Dichalcogenide Superconducting Nanocircuits, Nat Commun 14, 1 (2023).
  4. C. Samanta et al., Nonlinear Nanomechanical Resonators Approaching the Quantum Ground State, Nat. Phys. (2023).
  5. L. Qiu, R. Sahu, W. Hease, G. Arnold, and J. M. Fink, Coherent Optical Control of a Superconducting Microwave Cavity via Electro-Optical Dynamical Back-Action, Nat Commun 14 (2023).
  6. O. Maillet, D. Cattiaux, X. Zhou, R. R. Gazizulin, O. Bourgeois, A. D. Fefferman, and E. Collin, Nanomechanical Damping via Electron-Assisted Relaxation of Two-Level Systems, Phys. Rev. B 107, 064104 (2023).
  7. B. Kannan et al., On-Demand Directional Microwave Photon Emission Using Waveguide Quantum Electrodynamics, Nat. Phys. (2023).
  8. Z. Jiang, S. K. Chong, P. Zhang, P. Deng, S. Chu, S. Jahanbani, K. L. Wang, and K. Lai, Implementing Microwave Impedance Microscopy in a Dilution Refrigerator, Review of Scientific Instruments 94, 053701 (2023).
  9. P. Zellekens, R. Deacon, P. Perla, D. Grützmacher, M. I. Lepsa, T. Schäpers, and K. Ishibashi, Microwave Spectroscopy of Andreev States in InAs Nanowire-Based Hybrid Junctions Using a Flip-Chip Layout, arXiv:2112.08983 (2021).
  10. D. Rieger, S. Günzler, M. Spiecker, A. Nambisan, W. Wernsdorfer, and I. M. Pop, Fano Interference in Microwave Resonator Measurements, Phys. Rev. Applied 20, 014059 (2023).
  11. M. Marín-Suárez, J. T. Peltonen, D. S. Golubev, and J. P. Pekola, An Electron Turnstile for Frequency-to-Power Conversion, Nat. Nanotechnol. 17, 3 (2022).
  12. A. Guthrie, C. D. Satrya, Y.-C. Chang, P. Menczel, F. Nori, and J. P. Pekola, Cooper-Pair Box Coupled to Two Resonators: An Architecture for a Quantum Refrigerator, Phys. Rev. Applied 17, 064022 (2022).
  13. F. Blanchet, Y.-C. Chang, B. Karimi, J. T. Peltonen, and J. P. Pekola, Radio-Frequency Coulomb-Blockade Thermometry, Phys. Rev. Applied 17, L011003 (2022).
  14. P. Zellekens, R. Deacon, P. Perla, D. Grützmacher, M. I. Lepsa, T. Schäpers, and K. Ishibashi, Microwave Spectroscopy of Andreev States in InAs Nanowire-Based Hybrid Junctions Using a Flip-Chip Layout, ArXiv:2112.08983 [Cond-Mat] (2021).
  15. R. Upadhyay, G. Thomas, Y.-C. Chang, D. S. Golubev, A. Guthrie, A. Gubaydullin, J. T. Peltonen, and J. P. Pekola, Robust Strong-Coupling Architecture in Circuit Quantum Electrodynamics, Phys. Rev. Applied 16, 044045 (2021).
  16. L. Mercier de Lépinay, C. F. Ockeloen-Korppi, M. J. Woolley, and M. A. Sillanpää, Quantum Mechanics–Free Subsystem with Mechanical Oscillators, Science 372, 625 (2021).
  17. A. Guthrie, S. Kafanov, M. T. Noble, Y. A. Pashkin, G. R. Pickett, V. Tsepelin, A. A. Dorofeev, V. A. Krupenin, and D. E. Presnov, Nanoscale Real-Time Detection of Quantum Vortices at Millikelvin Temperatures, Nat Commun 12, 1 (2021).
  18. X. Rojas and J. P. Davis, Superfluid Nanomechanical Resonator for Quantum Nanofluidics, Phys. Rev. B 91, 024503 (2015).
  19. A. Grassellino, A. Romanenko, D. Sergatskov, O. Melnychuk, Y. Trenikhina, A. Crawford, A. Rowe, M. Wong, T. Khabiboulline, and F. Barkov, Nitrogen and Argon Doping of Niobium for Superconducting Radio Frequency Cavities: A Pathway to Highly Efficient Accelerating Structures, Supercond. Sci. Technol. 26, 102001 (2013).